{"title":"放电涂层制备的钛铜复合涂层表面池沸腾的实验研究","authors":"Amatya Bharadwaj, Rahul Dev Misra","doi":"10.1016/j.ijthermalsci.2024.109529","DOIUrl":null,"url":null,"abstract":"<div><div>Boiling heat transfer has become a very potent two-phase heat transfer mechanism for cooling high heat-producing devices such as microelectronic devices, fusion reactors or turbine blades. Increasing research has shown that micro/nano-structures on surfaces increase the number of nucleation sites for bubble formation, which ultimately results in a major improvement in boiling performance. This led to studies on developing various coated surfaces in order to generate micro/nano-structures on surfaces. In the current study, microstructured boiling surfaces were prepared using the Electric Discharge Coating (EDC) process. Titanium-copper (Ti-Cu) composite microparticles were coated on copper surface under reverse polarity in the Electric Discharge Machine. Four surfaces were prepared by using current settings of 3 A, 4 A, 5 A and 6 A. It was followed by characterisation of the surfaces which included, wettability analysis, porosity, pore size estimation, mean roughness measurement and elemental analysis, in order to better understand the boiling results on the surfaces. The surfaces formed were hydrophilic in nature, with contact angles varying from 47° to 65°. Pool boiling were performed with the developed surfaces and critical heat flux (CHF) and nucleate boiling heat transfer coefficient (NBHTC) improvement of 37.17 % and 172 % respectively were observed with the best performing surface compared to the bare surface. The best performing surface was also compared with relevant published literature to determine its standing against the present state of the art.</div></div>","PeriodicalId":341,"journal":{"name":"International Journal of Thermal Sciences","volume":"209 ","pages":"Article 109529"},"PeriodicalIF":4.9000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental investigation of pool boiling on Ti-Cu composite coated surfaces prepared using Electric Discharge Coating\",\"authors\":\"Amatya Bharadwaj, Rahul Dev Misra\",\"doi\":\"10.1016/j.ijthermalsci.2024.109529\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Boiling heat transfer has become a very potent two-phase heat transfer mechanism for cooling high heat-producing devices such as microelectronic devices, fusion reactors or turbine blades. Increasing research has shown that micro/nano-structures on surfaces increase the number of nucleation sites for bubble formation, which ultimately results in a major improvement in boiling performance. This led to studies on developing various coated surfaces in order to generate micro/nano-structures on surfaces. In the current study, microstructured boiling surfaces were prepared using the Electric Discharge Coating (EDC) process. Titanium-copper (Ti-Cu) composite microparticles were coated on copper surface under reverse polarity in the Electric Discharge Machine. Four surfaces were prepared by using current settings of 3 A, 4 A, 5 A and 6 A. It was followed by characterisation of the surfaces which included, wettability analysis, porosity, pore size estimation, mean roughness measurement and elemental analysis, in order to better understand the boiling results on the surfaces. The surfaces formed were hydrophilic in nature, with contact angles varying from 47° to 65°. Pool boiling were performed with the developed surfaces and critical heat flux (CHF) and nucleate boiling heat transfer coefficient (NBHTC) improvement of 37.17 % and 172 % respectively were observed with the best performing surface compared to the bare surface. The best performing surface was also compared with relevant published literature to determine its standing against the present state of the art.</div></div>\",\"PeriodicalId\":341,\"journal\":{\"name\":\"International Journal of Thermal Sciences\",\"volume\":\"209 \",\"pages\":\"Article 109529\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Thermal Sciences\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1290072924006513\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermal Sciences","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1290072924006513","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Experimental investigation of pool boiling on Ti-Cu composite coated surfaces prepared using Electric Discharge Coating
Boiling heat transfer has become a very potent two-phase heat transfer mechanism for cooling high heat-producing devices such as microelectronic devices, fusion reactors or turbine blades. Increasing research has shown that micro/nano-structures on surfaces increase the number of nucleation sites for bubble formation, which ultimately results in a major improvement in boiling performance. This led to studies on developing various coated surfaces in order to generate micro/nano-structures on surfaces. In the current study, microstructured boiling surfaces were prepared using the Electric Discharge Coating (EDC) process. Titanium-copper (Ti-Cu) composite microparticles were coated on copper surface under reverse polarity in the Electric Discharge Machine. Four surfaces were prepared by using current settings of 3 A, 4 A, 5 A and 6 A. It was followed by characterisation of the surfaces which included, wettability analysis, porosity, pore size estimation, mean roughness measurement and elemental analysis, in order to better understand the boiling results on the surfaces. The surfaces formed were hydrophilic in nature, with contact angles varying from 47° to 65°. Pool boiling were performed with the developed surfaces and critical heat flux (CHF) and nucleate boiling heat transfer coefficient (NBHTC) improvement of 37.17 % and 172 % respectively were observed with the best performing surface compared to the bare surface. The best performing surface was also compared with relevant published literature to determine its standing against the present state of the art.
期刊介绍:
The International Journal of Thermal Sciences is a journal devoted to the publication of fundamental studies on the physics of transfer processes in general, with an emphasis on thermal aspects and also applied research on various processes, energy systems and the environment. Articles are published in English and French, and are subject to peer review.
The fundamental subjects considered within the scope of the journal are:
* Heat and relevant mass transfer at all scales (nano, micro and macro) and in all types of material (heterogeneous, composites, biological,...) and fluid flow
* Forced, natural or mixed convection in reactive or non-reactive media
* Single or multi–phase fluid flow with or without phase change
* Near–and far–field radiative heat transfer
* Combined modes of heat transfer in complex systems (for example, plasmas, biological, geological,...)
* Multiscale modelling
The applied research topics include:
* Heat exchangers, heat pipes, cooling processes
* Transport phenomena taking place in industrial processes (chemical, food and agricultural, metallurgical, space and aeronautical, automobile industries)
* Nano–and micro–technology for energy, space, biosystems and devices
* Heat transport analysis in advanced systems
* Impact of energy–related processes on environment, and emerging energy systems
The study of thermophysical properties of materials and fluids, thermal measurement techniques, inverse methods, and the developments of experimental methods are within the scope of the International Journal of Thermal Sciences which also covers the modelling, and numerical methods applied to thermal transfer.