设计用于增强亚硫酸盐活化的碳基催化剂:污染物降解策略

IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL
Xiaowen Jiang , Shuyan Guan , Linfeng Chen , Fengxia Deng , Hui Yan , Fengyang Liu , Xuedong Zhai , Carlos A. Martínez-Huitle , Jing Ding
{"title":"设计用于增强亚硫酸盐活化的碳基催化剂:污染物降解策略","authors":"Xiaowen Jiang ,&nbsp;Shuyan Guan ,&nbsp;Linfeng Chen ,&nbsp;Fengxia Deng ,&nbsp;Hui Yan ,&nbsp;Fengyang Liu ,&nbsp;Xuedong Zhai ,&nbsp;Carlos A. Martínez-Huitle ,&nbsp;Jing Ding","doi":"10.1016/j.jece.2024.114719","DOIUrl":null,"url":null,"abstract":"<div><div>Sulfite, a common industrial by-product, catalyzes cost-effective advanced oxidation processes (AOPs) for wastewater treatment. Carbon-based materials mainly serve as charge transfer media, and play a catalytic role in heterogeneous sulfite activation processes. Previous literatures often overlook recent advancements in modifying carbon materials and their functional categorization, which is crucial for improving catalytic performance. Addressing these gaps, this review incorporates up-to-date bibliometric analyses, providing a thorough overview of carbon catalyst types and their environmental applications. It examines structural and surface modifications, the integration of metal and non-metal doping, and heterostructures, as well as their interactions with sulfite through both radical and non-radical pathways. Additionally, it assesses the implications of these modifications for catalytic efficiency and environmental safety. Ultimately, this review systematically categorizes carbon-based materials and mechanisms, promoting the development of more effective and sustainable sulfite activation strategies for pollution control.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114719"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Designing carbon-based catalysts for enhanced sulfite activation: Strategies for pollutant degradation\",\"authors\":\"Xiaowen Jiang ,&nbsp;Shuyan Guan ,&nbsp;Linfeng Chen ,&nbsp;Fengxia Deng ,&nbsp;Hui Yan ,&nbsp;Fengyang Liu ,&nbsp;Xuedong Zhai ,&nbsp;Carlos A. Martínez-Huitle ,&nbsp;Jing Ding\",\"doi\":\"10.1016/j.jece.2024.114719\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Sulfite, a common industrial by-product, catalyzes cost-effective advanced oxidation processes (AOPs) for wastewater treatment. Carbon-based materials mainly serve as charge transfer media, and play a catalytic role in heterogeneous sulfite activation processes. Previous literatures often overlook recent advancements in modifying carbon materials and their functional categorization, which is crucial for improving catalytic performance. Addressing these gaps, this review incorporates up-to-date bibliometric analyses, providing a thorough overview of carbon catalyst types and their environmental applications. It examines structural and surface modifications, the integration of metal and non-metal doping, and heterostructures, as well as their interactions with sulfite through both radical and non-radical pathways. Additionally, it assesses the implications of these modifications for catalytic efficiency and environmental safety. Ultimately, this review systematically categorizes carbon-based materials and mechanisms, promoting the development of more effective and sustainable sulfite activation strategies for pollution control.</div></div>\",\"PeriodicalId\":15759,\"journal\":{\"name\":\"Journal of Environmental Chemical Engineering\",\"volume\":\"12 6\",\"pages\":\"Article 114719\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213343724028513\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724028513","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

亚硫酸盐是一种常见的工业副产品,可催化用于废水处理的经济高效的高级氧化工艺(AOPs)。碳基材料主要作为电荷转移介质,在异相亚硫酸盐活化过程中发挥催化作用。以往的文献往往忽略了碳材料改性及其功能分类方面的最新进展,而这对于提高催化性能至关重要。针对这些不足,本综述纳入了最新的文献计量分析,全面概述了碳催化剂类型及其环境应用。它研究了结构和表面改性、金属和非金属掺杂的整合、异质结构,以及它们通过自由基和非自由基途径与亚硫酸盐的相互作用。此外,它还评估了这些改性对催化效率和环境安全的影响。最后,本综述对碳基材料和机制进行了系统分类,促进了更有效、更可持续的亚硫酸盐活化策略的开发,从而实现污染控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Designing carbon-based catalysts for enhanced sulfite activation: Strategies for pollutant degradation
Sulfite, a common industrial by-product, catalyzes cost-effective advanced oxidation processes (AOPs) for wastewater treatment. Carbon-based materials mainly serve as charge transfer media, and play a catalytic role in heterogeneous sulfite activation processes. Previous literatures often overlook recent advancements in modifying carbon materials and their functional categorization, which is crucial for improving catalytic performance. Addressing these gaps, this review incorporates up-to-date bibliometric analyses, providing a thorough overview of carbon catalyst types and their environmental applications. It examines structural and surface modifications, the integration of metal and non-metal doping, and heterostructures, as well as their interactions with sulfite through both radical and non-radical pathways. Additionally, it assesses the implications of these modifications for catalytic efficiency and environmental safety. Ultimately, this review systematically categorizes carbon-based materials and mechanisms, promoting the development of more effective and sustainable sulfite activation strategies for pollution control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Chemical Engineering
Journal of Environmental Chemical Engineering Environmental Science-Pollution
CiteScore
11.40
自引率
6.50%
发文量
2017
审稿时长
27 days
期刊介绍: The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信