Basiru O. Yusuf , Mustapha Umar , Mansur Aliyu , Aliyu M. Alhassan , Mohammed Mosaad Awad , Omer A. Taialla , AbdulHakam Shafiu Abdullahi , Jamilu Nura Musa , Khalid R. Alhooshani , Saheed A. Ganiyu
{"title":"基于 MXene 的光催化剂在环境修复方面的最新进展和未来展望","authors":"Basiru O. Yusuf , Mustapha Umar , Mansur Aliyu , Aliyu M. Alhassan , Mohammed Mosaad Awad , Omer A. Taialla , AbdulHakam Shafiu Abdullahi , Jamilu Nura Musa , Khalid R. Alhooshani , Saheed A. Ganiyu","doi":"10.1016/j.jece.2024.114812","DOIUrl":null,"url":null,"abstract":"<div><div>The increasing environmental challenges caused by industrial and urban development call for innovative remediation strategies. This review focuses on the novel advancements in MXene-based photocatalysts, highlighting the unique potential of MXenes, a two-dimensional family of transition metal carbides and nitrides for environmental cleanup. Unlike conventional materials, MXenes combine exceptional electronic, chemical, and mechanical properties, making them highly effective in utilizing solar energy for pollutant degradation. Their large surface area, tunable surface chemistry, functional groups, and high electrical conductivity allow for precise customization of catalytic sites, boosting their photocatalytic performance. This work explores the synthesis, properties, and mechanisms behind MXenes’ superior photocatalytic activity and their application in environmental remediation. It also addresses the challenges of scaling MXene systems for practical use, along with the opportunities they offer for broader environmental solutions. By highlighting the future prospects of MXene-based photocatalysts, this review emphasizes their potential to transform the field of environmental remediation.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114812"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Recent advances and future prospects of MXene-based photocatalysts in environmental remediations\",\"authors\":\"Basiru O. Yusuf , Mustapha Umar , Mansur Aliyu , Aliyu M. Alhassan , Mohammed Mosaad Awad , Omer A. Taialla , AbdulHakam Shafiu Abdullahi , Jamilu Nura Musa , Khalid R. Alhooshani , Saheed A. Ganiyu\",\"doi\":\"10.1016/j.jece.2024.114812\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The increasing environmental challenges caused by industrial and urban development call for innovative remediation strategies. This review focuses on the novel advancements in MXene-based photocatalysts, highlighting the unique potential of MXenes, a two-dimensional family of transition metal carbides and nitrides for environmental cleanup. Unlike conventional materials, MXenes combine exceptional electronic, chemical, and mechanical properties, making them highly effective in utilizing solar energy for pollutant degradation. Their large surface area, tunable surface chemistry, functional groups, and high electrical conductivity allow for precise customization of catalytic sites, boosting their photocatalytic performance. This work explores the synthesis, properties, and mechanisms behind MXenes’ superior photocatalytic activity and their application in environmental remediation. It also addresses the challenges of scaling MXene systems for practical use, along with the opportunities they offer for broader environmental solutions. By highlighting the future prospects of MXene-based photocatalysts, this review emphasizes their potential to transform the field of environmental remediation.</div></div>\",\"PeriodicalId\":15759,\"journal\":{\"name\":\"Journal of Environmental Chemical Engineering\",\"volume\":\"12 6\",\"pages\":\"Article 114812\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213343724029440\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724029440","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Recent advances and future prospects of MXene-based photocatalysts in environmental remediations
The increasing environmental challenges caused by industrial and urban development call for innovative remediation strategies. This review focuses on the novel advancements in MXene-based photocatalysts, highlighting the unique potential of MXenes, a two-dimensional family of transition metal carbides and nitrides for environmental cleanup. Unlike conventional materials, MXenes combine exceptional electronic, chemical, and mechanical properties, making them highly effective in utilizing solar energy for pollutant degradation. Their large surface area, tunable surface chemistry, functional groups, and high electrical conductivity allow for precise customization of catalytic sites, boosting their photocatalytic performance. This work explores the synthesis, properties, and mechanisms behind MXenes’ superior photocatalytic activity and their application in environmental remediation. It also addresses the challenges of scaling MXene systems for practical use, along with the opportunities they offer for broader environmental solutions. By highlighting the future prospects of MXene-based photocatalysts, this review emphasizes their potential to transform the field of environmental remediation.
期刊介绍:
The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.