{"title":"用光学行进浮动区法研究掺杂 Ta+Gd 的 TiO2 单晶中巨型介电常数的起源","authors":"Jiangtao Fan , Zhanggui Hu , Yicheng Wu","doi":"10.1016/j.jcrysgro.2024.127990","DOIUrl":null,"url":null,"abstract":"<div><div>The co-doped TiO<sub>2</sub> polycrystalline ceramics have dramatic dielectric behavior (>10<sup>4</sup>), but its source is still not completely clarified. Compared to ceramic materials, single crystals can maintain most of the original properties of the material and eliminate the grain boundary and pore interferences, thus facilitating the exploration of the source of the dielectric properties. Here, we chose Gd<sup>3+</sup> with a moderate ionic radius as the acceptor ion and Ta<sup>5+</sup> as the donor, preparing (Gd<sub>0.5</sub>Ta<sub>0.5</sub>)<sub>0.01</sub>Ti<sub>0.99</sub>O<sub>2</sub> single crystals by the optical traveling floating zone method to investigate giant dielectric properties. It was found that a dielectric constant (<em>ε</em>′ ∼1.5 × 10<sup>4</sup>), and a dielectric loss (tanδ ∼ 0.07) were achieved simultaneously in (Gd<sub>0.5</sub>Ta<sub>0.5</sub>)<sub>0.01</sub>Ti<sub>0.99</sub>O<sub>2</sub> single crystals at 10<sup>5</sup>Hz. Electrochemical impedance spectroscopy and XPS analyses indicate that the high dielectric properties are mainly attributed to electrons pinning defective dipoles clusters. In addition, dielectric relaxation behavior under DC bias suggests that electrode effects also affect the dielectric constant. This study provides insights for the origin of the large dielectric constant and the growth of single crystals in TiO<sub>2</sub>-based materials.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"650 ","pages":"Article 127990"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Origin of giant dielectric constant in Ta+Gd co-doped TiO2 single crystals by optical traveling floating zone method\",\"authors\":\"Jiangtao Fan , Zhanggui Hu , Yicheng Wu\",\"doi\":\"10.1016/j.jcrysgro.2024.127990\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The co-doped TiO<sub>2</sub> polycrystalline ceramics have dramatic dielectric behavior (>10<sup>4</sup>), but its source is still not completely clarified. Compared to ceramic materials, single crystals can maintain most of the original properties of the material and eliminate the grain boundary and pore interferences, thus facilitating the exploration of the source of the dielectric properties. Here, we chose Gd<sup>3+</sup> with a moderate ionic radius as the acceptor ion and Ta<sup>5+</sup> as the donor, preparing (Gd<sub>0.5</sub>Ta<sub>0.5</sub>)<sub>0.01</sub>Ti<sub>0.99</sub>O<sub>2</sub> single crystals by the optical traveling floating zone method to investigate giant dielectric properties. It was found that a dielectric constant (<em>ε</em>′ ∼1.5 × 10<sup>4</sup>), and a dielectric loss (tanδ ∼ 0.07) were achieved simultaneously in (Gd<sub>0.5</sub>Ta<sub>0.5</sub>)<sub>0.01</sub>Ti<sub>0.99</sub>O<sub>2</sub> single crystals at 10<sup>5</sup>Hz. Electrochemical impedance spectroscopy and XPS analyses indicate that the high dielectric properties are mainly attributed to electrons pinning defective dipoles clusters. In addition, dielectric relaxation behavior under DC bias suggests that electrode effects also affect the dielectric constant. This study provides insights for the origin of the large dielectric constant and the growth of single crystals in TiO<sub>2</sub>-based materials.</div></div>\",\"PeriodicalId\":353,\"journal\":{\"name\":\"Journal of Crystal Growth\",\"volume\":\"650 \",\"pages\":\"Article 127990\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Crystal Growth\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022024824004287\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022024824004287","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Origin of giant dielectric constant in Ta+Gd co-doped TiO2 single crystals by optical traveling floating zone method
The co-doped TiO2 polycrystalline ceramics have dramatic dielectric behavior (>104), but its source is still not completely clarified. Compared to ceramic materials, single crystals can maintain most of the original properties of the material and eliminate the grain boundary and pore interferences, thus facilitating the exploration of the source of the dielectric properties. Here, we chose Gd3+ with a moderate ionic radius as the acceptor ion and Ta5+ as the donor, preparing (Gd0.5Ta0.5)0.01Ti0.99O2 single crystals by the optical traveling floating zone method to investigate giant dielectric properties. It was found that a dielectric constant (ε′ ∼1.5 × 104), and a dielectric loss (tanδ ∼ 0.07) were achieved simultaneously in (Gd0.5Ta0.5)0.01Ti0.99O2 single crystals at 105Hz. Electrochemical impedance spectroscopy and XPS analyses indicate that the high dielectric properties are mainly attributed to electrons pinning defective dipoles clusters. In addition, dielectric relaxation behavior under DC bias suggests that electrode effects also affect the dielectric constant. This study provides insights for the origin of the large dielectric constant and the growth of single crystals in TiO2-based materials.
期刊介绍:
The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.