Chufeng Hou , Kai Liang , Ziyu Yang , Qiang Wang , Yuefei Zhang , Fei Chen
{"title":"使用三甲基镓和 H2O 的热原子层沉积 Ga2O3 薄膜","authors":"Chufeng Hou , Kai Liang , Ziyu Yang , Qiang Wang , Yuefei Zhang , Fei Chen","doi":"10.1016/j.jcrysgro.2024.127974","DOIUrl":null,"url":null,"abstract":"<div><div>The Atomic Layer Deposition (ALD) technique is regarded as an effective method for fabricating high-quality Ga<sub>2</sub>O<sub>3</sub> thin films. Trimethyl gallium (TMG), with its high vapor pressure at room temperature (227 Torr), is widely utilized as a gallium precursor in this technique. For oxygen precursors, common choices include O<sub>3</sub> and O<sub>2</sub> plasma. However, the impact of H<sub>2</sub>O as an oxygen precursor on Ga<sub>2</sub>O<sub>3</sub> thin films during Thermal Atomic Layer Deposition (TALD) remains insufficiently explored. This study investigates the temperature window and growth characteristics of Ga<sub>2</sub>O<sub>3</sub> thin films, deposited using TMG and H<sub>2</sub>O as precursors, on sapphire substrates within the temperature range of 250–500 °C. At 250 °C, deposited Ga<sub>2</sub>O<sub>3</sub> films exhibit an amorphous structure, whereas within the 300–500 °C substrate temperature range, they transition to the α-phase. The half-peak width (FWHM) narrows as the temperature increases, with characteristic peaks of the (0006) facets shifting to higher angles at 500 °C. STEM analysis reveals complete coherence between α-Ga<sub>2</sub>O<sub>3</sub> films and the sapphire substrate, indicating a pseudo-crystalline structure formation. The growth rate of the films at 450 °C is 0.083 Å/cycle. Ga<sub>2</sub>O<sub>3</sub> films prepared with H<sub>2</sub>O as the oxygen precursor exhibit Ga-rich properties, with (Ga + Al)/O atomic ratios between 0.88 and 0.91 across the 250–500 °C temperature range. The films’ roughness (Ra) ranges from 0.453 to 0.646 nm. Island-like particles form on the film surface within the 400–500 °C range, smoothing out as the temperature rises. The film’s band gap peaks at 5.50 eV at 450 °C. The reaction of TMG with H<sub>2</sub>O on sapphire substrates yields Ga<sub>2</sub>O<sub>3</sub> films and CH<sub>4</sub> by-products, akin to the trimethylaluminum process.</div></div>","PeriodicalId":353,"journal":{"name":"Journal of Crystal Growth","volume":"650 ","pages":"Article 127974"},"PeriodicalIF":1.7000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermal atomic layer deposition of Ga2O3 films using trimethylgallium and H2O\",\"authors\":\"Chufeng Hou , Kai Liang , Ziyu Yang , Qiang Wang , Yuefei Zhang , Fei Chen\",\"doi\":\"10.1016/j.jcrysgro.2024.127974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Atomic Layer Deposition (ALD) technique is regarded as an effective method for fabricating high-quality Ga<sub>2</sub>O<sub>3</sub> thin films. Trimethyl gallium (TMG), with its high vapor pressure at room temperature (227 Torr), is widely utilized as a gallium precursor in this technique. For oxygen precursors, common choices include O<sub>3</sub> and O<sub>2</sub> plasma. However, the impact of H<sub>2</sub>O as an oxygen precursor on Ga<sub>2</sub>O<sub>3</sub> thin films during Thermal Atomic Layer Deposition (TALD) remains insufficiently explored. This study investigates the temperature window and growth characteristics of Ga<sub>2</sub>O<sub>3</sub> thin films, deposited using TMG and H<sub>2</sub>O as precursors, on sapphire substrates within the temperature range of 250–500 °C. At 250 °C, deposited Ga<sub>2</sub>O<sub>3</sub> films exhibit an amorphous structure, whereas within the 300–500 °C substrate temperature range, they transition to the α-phase. The half-peak width (FWHM) narrows as the temperature increases, with characteristic peaks of the (0006) facets shifting to higher angles at 500 °C. STEM analysis reveals complete coherence between α-Ga<sub>2</sub>O<sub>3</sub> films and the sapphire substrate, indicating a pseudo-crystalline structure formation. The growth rate of the films at 450 °C is 0.083 Å/cycle. Ga<sub>2</sub>O<sub>3</sub> films prepared with H<sub>2</sub>O as the oxygen precursor exhibit Ga-rich properties, with (Ga + Al)/O atomic ratios between 0.88 and 0.91 across the 250–500 °C temperature range. The films’ roughness (Ra) ranges from 0.453 to 0.646 nm. Island-like particles form on the film surface within the 400–500 °C range, smoothing out as the temperature rises. The film’s band gap peaks at 5.50 eV at 450 °C. The reaction of TMG with H<sub>2</sub>O on sapphire substrates yields Ga<sub>2</sub>O<sub>3</sub> films and CH<sub>4</sub> by-products, akin to the trimethylaluminum process.</div></div>\",\"PeriodicalId\":353,\"journal\":{\"name\":\"Journal of Crystal Growth\",\"volume\":\"650 \",\"pages\":\"Article 127974\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Crystal Growth\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022024824004123\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CRYSTALLOGRAPHY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Crystal Growth","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022024824004123","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CRYSTALLOGRAPHY","Score":null,"Total":0}
Thermal atomic layer deposition of Ga2O3 films using trimethylgallium and H2O
The Atomic Layer Deposition (ALD) technique is regarded as an effective method for fabricating high-quality Ga2O3 thin films. Trimethyl gallium (TMG), with its high vapor pressure at room temperature (227 Torr), is widely utilized as a gallium precursor in this technique. For oxygen precursors, common choices include O3 and O2 plasma. However, the impact of H2O as an oxygen precursor on Ga2O3 thin films during Thermal Atomic Layer Deposition (TALD) remains insufficiently explored. This study investigates the temperature window and growth characteristics of Ga2O3 thin films, deposited using TMG and H2O as precursors, on sapphire substrates within the temperature range of 250–500 °C. At 250 °C, deposited Ga2O3 films exhibit an amorphous structure, whereas within the 300–500 °C substrate temperature range, they transition to the α-phase. The half-peak width (FWHM) narrows as the temperature increases, with characteristic peaks of the (0006) facets shifting to higher angles at 500 °C. STEM analysis reveals complete coherence between α-Ga2O3 films and the sapphire substrate, indicating a pseudo-crystalline structure formation. The growth rate of the films at 450 °C is 0.083 Å/cycle. Ga2O3 films prepared with H2O as the oxygen precursor exhibit Ga-rich properties, with (Ga + Al)/O atomic ratios between 0.88 and 0.91 across the 250–500 °C temperature range. The films’ roughness (Ra) ranges from 0.453 to 0.646 nm. Island-like particles form on the film surface within the 400–500 °C range, smoothing out as the temperature rises. The film’s band gap peaks at 5.50 eV at 450 °C. The reaction of TMG with H2O on sapphire substrates yields Ga2O3 films and CH4 by-products, akin to the trimethylaluminum process.
期刊介绍:
The journal offers a common reference and publication source for workers engaged in research on the experimental and theoretical aspects of crystal growth and its applications, e.g. in devices. Experimental and theoretical contributions are published in the following fields: theory of nucleation and growth, molecular kinetics and transport phenomena, crystallization in viscous media such as polymers and glasses; crystal growth of metals, minerals, semiconductors, superconductors, magnetics, inorganic, organic and biological substances in bulk or as thin films; molecular beam epitaxy, chemical vapor deposition, growth of III-V and II-VI and other semiconductors; characterization of single crystals by physical and chemical methods; apparatus, instrumentation and techniques for crystal growth, and purification methods; multilayer heterostructures and their characterisation with an emphasis on crystal growth and epitaxial aspects of electronic materials. A special feature of the journal is the periodic inclusion of proceedings of symposia and conferences on relevant aspects of crystal growth.