Liangming Sun , Shuguang Liu , Umar Muhammad , Hanbing Zhao
{"title":"考虑接触面滑移和粘附状态的横向载荷下螺栓松动机理研究","authors":"Liangming Sun , Shuguang Liu , Umar Muhammad , Hanbing Zhao","doi":"10.1016/j.jcsr.2024.109149","DOIUrl":null,"url":null,"abstract":"<div><div>The complexity of the thread surface makes it challenging to analyze the mechanism of bolt loosening from a mechanical perspective. To analyze the mechanism of bolt loosening, this paper proposes a mathematical model. Initially, the characteristics of the threaded surface are precisely represented using cylindrical and Cartesian coordinate systems, and the contact relationship of the thread contact surface is derived through normal and tangential vectors. Subsequently, the integral expressions for friction force and torque under transverse load are derived. The results indicate that as the frictional force between the contact surfaces increases, the torque caused by the friction force gradually decreases. Complete slip occurs when the frictional force reaches the critical value, at which point the torque is essentially at its minimum. Furthermore, the comparison between theoretical and finite element results demonstrates that the derived formulas can qualitatively express the loosening mechanism of the bolt under transverse load. Parametric analysis shows that the greater the transverse amplitude, the more likely the contact surfaces will slip. Slip reduces the resistance torque between the contact surfaces, leading to bolt loosening. Increasing the friction coefficient of the thread contact surface and ensuring that the friction coefficient of the bolt head contact surface is sufficiently different from that of the thread contact surface can effectively prevent bolt loosening. This strategy ensures that at least one contact surface maintains adhesion during vibrations, sustaining an adequate resisting torque to counteract loosening.</div></div>","PeriodicalId":15557,"journal":{"name":"Journal of Constructional Steel Research","volume":"224 ","pages":"Article 109149"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on bolt loosening mechanism under transverse load considering slip and adhesion status of contact surfaces\",\"authors\":\"Liangming Sun , Shuguang Liu , Umar Muhammad , Hanbing Zhao\",\"doi\":\"10.1016/j.jcsr.2024.109149\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The complexity of the thread surface makes it challenging to analyze the mechanism of bolt loosening from a mechanical perspective. To analyze the mechanism of bolt loosening, this paper proposes a mathematical model. Initially, the characteristics of the threaded surface are precisely represented using cylindrical and Cartesian coordinate systems, and the contact relationship of the thread contact surface is derived through normal and tangential vectors. Subsequently, the integral expressions for friction force and torque under transverse load are derived. The results indicate that as the frictional force between the contact surfaces increases, the torque caused by the friction force gradually decreases. Complete slip occurs when the frictional force reaches the critical value, at which point the torque is essentially at its minimum. Furthermore, the comparison between theoretical and finite element results demonstrates that the derived formulas can qualitatively express the loosening mechanism of the bolt under transverse load. Parametric analysis shows that the greater the transverse amplitude, the more likely the contact surfaces will slip. Slip reduces the resistance torque between the contact surfaces, leading to bolt loosening. Increasing the friction coefficient of the thread contact surface and ensuring that the friction coefficient of the bolt head contact surface is sufficiently different from that of the thread contact surface can effectively prevent bolt loosening. This strategy ensures that at least one contact surface maintains adhesion during vibrations, sustaining an adequate resisting torque to counteract loosening.</div></div>\",\"PeriodicalId\":15557,\"journal\":{\"name\":\"Journal of Constructional Steel Research\",\"volume\":\"224 \",\"pages\":\"Article 109149\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Constructional Steel Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0143974X24006990\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Constructional Steel Research","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0143974X24006990","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Study on bolt loosening mechanism under transverse load considering slip and adhesion status of contact surfaces
The complexity of the thread surface makes it challenging to analyze the mechanism of bolt loosening from a mechanical perspective. To analyze the mechanism of bolt loosening, this paper proposes a mathematical model. Initially, the characteristics of the threaded surface are precisely represented using cylindrical and Cartesian coordinate systems, and the contact relationship of the thread contact surface is derived through normal and tangential vectors. Subsequently, the integral expressions for friction force and torque under transverse load are derived. The results indicate that as the frictional force between the contact surfaces increases, the torque caused by the friction force gradually decreases. Complete slip occurs when the frictional force reaches the critical value, at which point the torque is essentially at its minimum. Furthermore, the comparison between theoretical and finite element results demonstrates that the derived formulas can qualitatively express the loosening mechanism of the bolt under transverse load. Parametric analysis shows that the greater the transverse amplitude, the more likely the contact surfaces will slip. Slip reduces the resistance torque between the contact surfaces, leading to bolt loosening. Increasing the friction coefficient of the thread contact surface and ensuring that the friction coefficient of the bolt head contact surface is sufficiently different from that of the thread contact surface can effectively prevent bolt loosening. This strategy ensures that at least one contact surface maintains adhesion during vibrations, sustaining an adequate resisting torque to counteract loosening.
期刊介绍:
The Journal of Constructional Steel Research provides an international forum for the presentation and discussion of the latest developments in structural steel research and their applications. It is aimed not only at researchers but also at those likely to be most affected by research results, i.e. designers and fabricators. Original papers of a high standard dealing with all aspects of steel research including theoretical and experimental research on elements, assemblages, connection and material properties are considered for publication.