Jer-Chyi Wang , Tzu-Chuan Yang , Tzu-Wei Hsu , Ping-Jung Huang , Peng-Nang Chen , Chen-Yang Tseng , Ting-Han Lin , Jia-Mao Chang , Chang-Heng Liu , Wen-Ling Yeh , Ming-Chung Wu
{"title":"基于 TiO2-NFs:P(VDF-TrFE) 纳米复合材料的自供电压电紫外线光电探测器,通过紫外线辅助热退火防止紫外线过度照射","authors":"Jer-Chyi Wang , Tzu-Chuan Yang , Tzu-Wei Hsu , Ping-Jung Huang , Peng-Nang Chen , Chen-Yang Tseng , Ting-Han Lin , Jia-Mao Chang , Chang-Heng Liu , Wen-Ling Yeh , Ming-Chung Wu","doi":"10.1016/j.jtice.2024.105808","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><div>Ultraviolet (UV) radiation overexposure due to severe ozone layer depletion increases the risk of skin cancer. However, the traditional UV index meter needs the power supply which is not convenient for outdoor use. The study aims to develop a UV overexposure warning system with a self-powered piezoelectric UV photodetector to provide a real-time UV index.</div></div><div><h3>Method</h3><div>A self-powered piezoelectric UV photodetector with TiO<sub>2</sub>-nanofibers (TiO<sub>2</sub>-NFs)-doped poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) nanocomposite films via ultraviolet-assisted thermal annealing was fabricated. A lumped circuit was designed to realize the stepping illumination of light-emitting diodes (LEDs) under continuous tapping of self-powered piezoelectric UV photodetectors.</div></div><div><h3>Significant Findings</h3><div>At a fixed 40-kPa pressure and 2-Hz frequency with varying UV irradiation power densities, the self-powered piezoelectric UV photodetectors exhibited outstanding UV detection capabilities, with a responsivity and detectivity for 0.14 mA/W and 4 × 10<sup>8</sup> Jones, respectively. A UV overexposure warning system was established by connecting a self-powered piezoelectric UV photodetector with a lumped circuit to achieve the stepping illumination of LEDs under continuous tapping, giving warnings for those performing outdoor activities to avoid UV overexposure.</div></div>","PeriodicalId":381,"journal":{"name":"Journal of the Taiwan Institute of Chemical Engineers","volume":"165 ","pages":"Article 105808"},"PeriodicalIF":5.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Self-powered piezoelectric ultraviolet photodetectors based on TiO2-NFs:P(VDF-TrFE) nanocomposites via ultraviolet-assisted thermal annealing for the prevention of ultraviolet overexposure\",\"authors\":\"Jer-Chyi Wang , Tzu-Chuan Yang , Tzu-Wei Hsu , Ping-Jung Huang , Peng-Nang Chen , Chen-Yang Tseng , Ting-Han Lin , Jia-Mao Chang , Chang-Heng Liu , Wen-Ling Yeh , Ming-Chung Wu\",\"doi\":\"10.1016/j.jtice.2024.105808\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Background</h3><div>Ultraviolet (UV) radiation overexposure due to severe ozone layer depletion increases the risk of skin cancer. However, the traditional UV index meter needs the power supply which is not convenient for outdoor use. The study aims to develop a UV overexposure warning system with a self-powered piezoelectric UV photodetector to provide a real-time UV index.</div></div><div><h3>Method</h3><div>A self-powered piezoelectric UV photodetector with TiO<sub>2</sub>-nanofibers (TiO<sub>2</sub>-NFs)-doped poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) nanocomposite films via ultraviolet-assisted thermal annealing was fabricated. A lumped circuit was designed to realize the stepping illumination of light-emitting diodes (LEDs) under continuous tapping of self-powered piezoelectric UV photodetectors.</div></div><div><h3>Significant Findings</h3><div>At a fixed 40-kPa pressure and 2-Hz frequency with varying UV irradiation power densities, the self-powered piezoelectric UV photodetectors exhibited outstanding UV detection capabilities, with a responsivity and detectivity for 0.14 mA/W and 4 × 10<sup>8</sup> Jones, respectively. A UV overexposure warning system was established by connecting a self-powered piezoelectric UV photodetector with a lumped circuit to achieve the stepping illumination of LEDs under continuous tapping, giving warnings for those performing outdoor activities to avoid UV overexposure.</div></div>\",\"PeriodicalId\":381,\"journal\":{\"name\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"volume\":\"165 \",\"pages\":\"Article 105808\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of the Taiwan Institute of Chemical Engineers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1876107024004668\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Taiwan Institute of Chemical Engineers","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1876107024004668","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Self-powered piezoelectric ultraviolet photodetectors based on TiO2-NFs:P(VDF-TrFE) nanocomposites via ultraviolet-assisted thermal annealing for the prevention of ultraviolet overexposure
Background
Ultraviolet (UV) radiation overexposure due to severe ozone layer depletion increases the risk of skin cancer. However, the traditional UV index meter needs the power supply which is not convenient for outdoor use. The study aims to develop a UV overexposure warning system with a self-powered piezoelectric UV photodetector to provide a real-time UV index.
Method
A self-powered piezoelectric UV photodetector with TiO2-nanofibers (TiO2-NFs)-doped poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) nanocomposite films via ultraviolet-assisted thermal annealing was fabricated. A lumped circuit was designed to realize the stepping illumination of light-emitting diodes (LEDs) under continuous tapping of self-powered piezoelectric UV photodetectors.
Significant Findings
At a fixed 40-kPa pressure and 2-Hz frequency with varying UV irradiation power densities, the self-powered piezoelectric UV photodetectors exhibited outstanding UV detection capabilities, with a responsivity and detectivity for 0.14 mA/W and 4 × 108 Jones, respectively. A UV overexposure warning system was established by connecting a self-powered piezoelectric UV photodetector with a lumped circuit to achieve the stepping illumination of LEDs under continuous tapping, giving warnings for those performing outdoor activities to avoid UV overexposure.
期刊介绍:
Journal of the Taiwan Institute of Chemical Engineers (formerly known as Journal of the Chinese Institute of Chemical Engineers) publishes original works, from fundamental principles to practical applications, in the broad field of chemical engineering with special focus on three aspects: Chemical and Biomolecular Science and Technology, Energy and Environmental Science and Technology, and Materials Science and Technology. Authors should choose for their manuscript an appropriate aspect section and a few related classifications when submitting to the journal online.