利用傅立叶神经算子加速非线性椭圆 PDE 牛顿法的收敛性

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Joubine Aghili , Emmanuel Franck , Romain Hild , Victor Michel-Dansac , Vincent Vigon
{"title":"利用傅立叶神经算子加速非线性椭圆 PDE 牛顿法的收敛性","authors":"Joubine Aghili ,&nbsp;Emmanuel Franck ,&nbsp;Romain Hild ,&nbsp;Victor Michel-Dansac ,&nbsp;Vincent Vigon","doi":"10.1016/j.cnsns.2024.108434","DOIUrl":null,"url":null,"abstract":"<div><div>It is well known that Newton’s method can have trouble converging if the initial guess is too far from the solution. Such a problem particularly occurs when this method is used to solve nonlinear elliptic partial differential equations (PDEs) discretized via finite differences. This work focuses on accelerating Newton’s method convergence in this context. We seek to construct a mapping from the parameters of the nonlinear PDE to an approximation of its discrete solution, independently of the mesh resolution. This approximation is then used as an initial guess for Newton’s method. To achieve these objectives, we elect to use a Fourier neural operator (FNO). The loss function is the sum of a data term (i.e., the comparison between known solutions and outputs of the FNO) and a physical term (i.e., the residual of the PDE discretization). Numerical results, in one and two dimensions, show that the proposed initial guess accelerates the convergence of Newton’s method by a large margin compared to a naive initial guess, especially for highly nonlinear and anisotropic problems, with larger gains on coarse grids.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"140 ","pages":"Article 108434"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Accelerating the convergence of Newton’s method for nonlinear elliptic PDEs using Fourier neural operators\",\"authors\":\"Joubine Aghili ,&nbsp;Emmanuel Franck ,&nbsp;Romain Hild ,&nbsp;Victor Michel-Dansac ,&nbsp;Vincent Vigon\",\"doi\":\"10.1016/j.cnsns.2024.108434\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>It is well known that Newton’s method can have trouble converging if the initial guess is too far from the solution. Such a problem particularly occurs when this method is used to solve nonlinear elliptic partial differential equations (PDEs) discretized via finite differences. This work focuses on accelerating Newton’s method convergence in this context. We seek to construct a mapping from the parameters of the nonlinear PDE to an approximation of its discrete solution, independently of the mesh resolution. This approximation is then used as an initial guess for Newton’s method. To achieve these objectives, we elect to use a Fourier neural operator (FNO). The loss function is the sum of a data term (i.e., the comparison between known solutions and outputs of the FNO) and a physical term (i.e., the residual of the PDE discretization). Numerical results, in one and two dimensions, show that the proposed initial guess accelerates the convergence of Newton’s method by a large margin compared to a naive initial guess, especially for highly nonlinear and anisotropic problems, with larger gains on coarse grids.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"140 \",\"pages\":\"Article 108434\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424006191\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424006191","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,如果初始猜测与解相差太远,牛顿法就很难收敛。当这种方法用于求解通过有限差分离散化的非线性椭圆偏微分方程(PDEs)时,尤其会出现这种问题。这项工作的重点是加速牛顿方法在这种情况下的收敛。我们试图构建一个从非线性偏微分方程参数到其离散解近似值的映射,而与网格分辨率无关。然后将该近似值作为牛顿方法的初始猜测。为了实现这些目标,我们选择使用傅立叶神经算子(FNO)。损失函数是数据项(即已知解与 FNO 输出的比较)和物理项(即 PDE 离散化的残差)之和。一维和二维的数值结果表明,与天真的初始猜测相比,所提出的初始猜测加快了牛顿方法的收敛速度,特别是对于高度非线性和各向异性问题,在粗网格上的收益更大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Accelerating the convergence of Newton’s method for nonlinear elliptic PDEs using Fourier neural operators
It is well known that Newton’s method can have trouble converging if the initial guess is too far from the solution. Such a problem particularly occurs when this method is used to solve nonlinear elliptic partial differential equations (PDEs) discretized via finite differences. This work focuses on accelerating Newton’s method convergence in this context. We seek to construct a mapping from the parameters of the nonlinear PDE to an approximation of its discrete solution, independently of the mesh resolution. This approximation is then used as an initial guess for Newton’s method. To achieve these objectives, we elect to use a Fourier neural operator (FNO). The loss function is the sum of a data term (i.e., the comparison between known solutions and outputs of the FNO) and a physical term (i.e., the residual of the PDE discretization). Numerical results, in one and two dimensions, show that the proposed initial guess accelerates the convergence of Newton’s method by a large margin compared to a naive initial guess, especially for highly nonlinear and anisotropic problems, with larger gains on coarse grids.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信