具有脉冲控制和致动器饱和的复杂动态网络的有限时间同步:一种 LMI 方法

IF 3.4 2区 数学 Q1 MATHEMATICS, APPLIED
Xuran Wan , Lulu Li , Jianquan Lu
{"title":"具有脉冲控制和致动器饱和的复杂动态网络的有限时间同步:一种 LMI 方法","authors":"Xuran Wan ,&nbsp;Lulu Li ,&nbsp;Jianquan Lu","doi":"10.1016/j.cnsns.2024.108424","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the finite-time synchronization (FTS) of complex dynamic networks (CDNs) with impulsive control subject to actuator saturation. We develop a novel method that integrates the impulsive comparison principle and improved convex hull representation lemma of saturated function to derive LMI-based sufficient conditions for FTS, which are easy to verify. We also estimate the admissible set of initial values to ensure the validity of the lemma. Unlike previous work, we relax the monotonicity assumption on the Lyapunov function, which broadens our results’ applicability. Moreover, we formulate and solve an optimization problem to enlarge the admissible set under the LMI constraints, using YALMIP toolbox in MATLAB software. Finally, several numerical examples are proposed to demonstrate our results’ effectiveness and superiority.</div></div>","PeriodicalId":50658,"journal":{"name":"Communications in Nonlinear Science and Numerical Simulation","volume":"140 ","pages":"Article 108424"},"PeriodicalIF":3.4000,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Finite-time synchronization of complex dynamic networks with impulsive control and actuator saturation: An LMI approach\",\"authors\":\"Xuran Wan ,&nbsp;Lulu Li ,&nbsp;Jianquan Lu\",\"doi\":\"10.1016/j.cnsns.2024.108424\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This paper investigates the finite-time synchronization (FTS) of complex dynamic networks (CDNs) with impulsive control subject to actuator saturation. We develop a novel method that integrates the impulsive comparison principle and improved convex hull representation lemma of saturated function to derive LMI-based sufficient conditions for FTS, which are easy to verify. We also estimate the admissible set of initial values to ensure the validity of the lemma. Unlike previous work, we relax the monotonicity assumption on the Lyapunov function, which broadens our results’ applicability. Moreover, we formulate and solve an optimization problem to enlarge the admissible set under the LMI constraints, using YALMIP toolbox in MATLAB software. Finally, several numerical examples are proposed to demonstrate our results’ effectiveness and superiority.</div></div>\",\"PeriodicalId\":50658,\"journal\":{\"name\":\"Communications in Nonlinear Science and Numerical Simulation\",\"volume\":\"140 \",\"pages\":\"Article 108424\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications in Nonlinear Science and Numerical Simulation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1007570424006099\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Nonlinear Science and Numerical Simulation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1007570424006099","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

本文研究了受致动器饱和影响的具有脉冲控制的复杂动态网络(CDN)的有限时间同步(FTS)问题。我们开发了一种新方法,该方法综合了脉冲比较原理和饱和函数的改进凸壳表示法,推导出了基于 LMI 的 FTS 充分条件,这些条件易于验证。我们还估计了可接受的初始值集,以确保该 Lemma 的有效性。与之前的研究不同,我们放宽了 Lyapunov 函数的单调性假设,从而拓宽了结果的适用范围。此外,我们还利用 MATLAB 软件中的 YALMIP 工具箱提出并解决了一个优化问题,以扩大 LMI 约束下的可容许集。最后,我们提出了几个数值示例来证明我们结果的有效性和优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Finite-time synchronization of complex dynamic networks with impulsive control and actuator saturation: An LMI approach
This paper investigates the finite-time synchronization (FTS) of complex dynamic networks (CDNs) with impulsive control subject to actuator saturation. We develop a novel method that integrates the impulsive comparison principle and improved convex hull representation lemma of saturated function to derive LMI-based sufficient conditions for FTS, which are easy to verify. We also estimate the admissible set of initial values to ensure the validity of the lemma. Unlike previous work, we relax the monotonicity assumption on the Lyapunov function, which broadens our results’ applicability. Moreover, we formulate and solve an optimization problem to enlarge the admissible set under the LMI constraints, using YALMIP toolbox in MATLAB software. Finally, several numerical examples are proposed to demonstrate our results’ effectiveness and superiority.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications in Nonlinear Science and Numerical Simulation
Communications in Nonlinear Science and Numerical Simulation MATHEMATICS, APPLIED-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
6.80
自引率
7.70%
发文量
378
审稿时长
78 days
期刊介绍: The journal publishes original research findings on experimental observation, mathematical modeling, theoretical analysis and numerical simulation, for more accurate description, better prediction or novel application, of nonlinear phenomena in science and engineering. It offers a venue for researchers to make rapid exchange of ideas and techniques in nonlinear science and complexity. The submission of manuscripts with cross-disciplinary approaches in nonlinear science and complexity is particularly encouraged. Topics of interest: Nonlinear differential or delay equations, Lie group analysis and asymptotic methods, Discontinuous systems, Fractals, Fractional calculus and dynamics, Nonlinear effects in quantum mechanics, Nonlinear stochastic processes, Experimental nonlinear science, Time-series and signal analysis, Computational methods and simulations in nonlinear science and engineering, Control of dynamical systems, Synchronization, Lyapunov analysis, High-dimensional chaos and turbulence, Chaos in Hamiltonian systems, Integrable systems and solitons, Collective behavior in many-body systems, Biological physics and networks, Nonlinear mechanical systems, Complex systems and complexity. No length limitation for contributions is set, but only concisely written manuscripts are published. Brief papers are published on the basis of Rapid Communications. Discussions of previously published papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信