{"title":"基于状态可切换环形振荡器的轻量级高吞吐量真随机数发生器","authors":"Shehui Wu, Huaguo Liang, Siyu Wang, Hao Lv, Maoxiang Yi, Yingchun Lu","doi":"10.1016/j.vlsi.2024.102305","DOIUrl":null,"url":null,"abstract":"<div><div>True random number generators (TRNGs) perform an extremely critical role in cryptographic algorithms and security protocols, scientific simulation, industrial testing, privacy protection, and numerous other domains. Nevertheless, modern TRNGs have difficulty striking a reasonable balance between high throughput and low hardware consumption. In this paper, a novel lightweight high-throughput TRNG based on state switchable ring oscillators (SSROs) is proposed. Under the effect of flip-flops that are prone to entering the metastable region, the SSROs randomly switch between oscillatory and buffer states to create jitter and metastability. A feedback strategy is adopted to effectively eliminate the fixed point in the circuit, which further enhances the randomness of the structure. The proposed TRNG is implemented on Xilinx Artix-7 and Kintex-7 FPGAs, with support for automatic routing. It achieves a throughput of up to 400 Mbps while consuming only 16 LUTs and 13 DFFs, showing extremely high resource utilization efficiency. Experimental results show that the output random sequence passes the NIST SP800-22 test, the NIST SP800-90B test, and the AIS-31 test without any post-processing, exhibiting strong robustness against voltage and temperature variations as well as frequency injection attacks.</div></div>","PeriodicalId":54973,"journal":{"name":"Integration-The Vlsi Journal","volume":"100 ","pages":"Article 102305"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lightweight high-throughput true random number generator based on state switchable ring oscillator\",\"authors\":\"Shehui Wu, Huaguo Liang, Siyu Wang, Hao Lv, Maoxiang Yi, Yingchun Lu\",\"doi\":\"10.1016/j.vlsi.2024.102305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>True random number generators (TRNGs) perform an extremely critical role in cryptographic algorithms and security protocols, scientific simulation, industrial testing, privacy protection, and numerous other domains. Nevertheless, modern TRNGs have difficulty striking a reasonable balance between high throughput and low hardware consumption. In this paper, a novel lightweight high-throughput TRNG based on state switchable ring oscillators (SSROs) is proposed. Under the effect of flip-flops that are prone to entering the metastable region, the SSROs randomly switch between oscillatory and buffer states to create jitter and metastability. A feedback strategy is adopted to effectively eliminate the fixed point in the circuit, which further enhances the randomness of the structure. The proposed TRNG is implemented on Xilinx Artix-7 and Kintex-7 FPGAs, with support for automatic routing. It achieves a throughput of up to 400 Mbps while consuming only 16 LUTs and 13 DFFs, showing extremely high resource utilization efficiency. Experimental results show that the output random sequence passes the NIST SP800-22 test, the NIST SP800-90B test, and the AIS-31 test without any post-processing, exhibiting strong robustness against voltage and temperature variations as well as frequency injection attacks.</div></div>\",\"PeriodicalId\":54973,\"journal\":{\"name\":\"Integration-The Vlsi Journal\",\"volume\":\"100 \",\"pages\":\"Article 102305\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integration-The Vlsi Journal\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S016792602400169X\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integration-The Vlsi Journal","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S016792602400169X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Lightweight high-throughput true random number generator based on state switchable ring oscillator
True random number generators (TRNGs) perform an extremely critical role in cryptographic algorithms and security protocols, scientific simulation, industrial testing, privacy protection, and numerous other domains. Nevertheless, modern TRNGs have difficulty striking a reasonable balance between high throughput and low hardware consumption. In this paper, a novel lightweight high-throughput TRNG based on state switchable ring oscillators (SSROs) is proposed. Under the effect of flip-flops that are prone to entering the metastable region, the SSROs randomly switch between oscillatory and buffer states to create jitter and metastability. A feedback strategy is adopted to effectively eliminate the fixed point in the circuit, which further enhances the randomness of the structure. The proposed TRNG is implemented on Xilinx Artix-7 and Kintex-7 FPGAs, with support for automatic routing. It achieves a throughput of up to 400 Mbps while consuming only 16 LUTs and 13 DFFs, showing extremely high resource utilization efficiency. Experimental results show that the output random sequence passes the NIST SP800-22 test, the NIST SP800-90B test, and the AIS-31 test without any post-processing, exhibiting strong robustness against voltage and temperature variations as well as frequency injection attacks.
期刊介绍:
Integration''s aim is to cover every aspect of the VLSI area, with an emphasis on cross-fertilization between various fields of science, and the design, verification, test and applications of integrated circuits and systems, as well as closely related topics in process and device technologies. Individual issues will feature peer-reviewed tutorials and articles as well as reviews of recent publications. The intended coverage of the journal can be assessed by examining the following (non-exclusive) list of topics:
Specification methods and languages; Analog/Digital Integrated Circuits and Systems; VLSI architectures; Algorithms, methods and tools for modeling, simulation, synthesis and verification of integrated circuits and systems of any complexity; Embedded systems; High-level synthesis for VLSI systems; Logic synthesis and finite automata; Testing, design-for-test and test generation algorithms; Physical design; Formal verification; Algorithms implemented in VLSI systems; Systems engineering; Heterogeneous systems.