丙酮酸-甲酸裂解酶及其他

IF 7.4 2区 工程技术 Q1 ENGINEERING, CHEMICAL
Xuan Zhang , Wei Ye , Weihong Jiang , Yang Gu
{"title":"丙酮酸-甲酸裂解酶及其他","authors":"Xuan Zhang ,&nbsp;Wei Ye ,&nbsp;Weihong Jiang ,&nbsp;Yang Gu","doi":"10.1016/j.jece.2024.114737","DOIUrl":null,"url":null,"abstract":"<div><div>Pyruvate-formate lyases (PFLs) are crucial catalysts that employ both a core enzyme and an activating enzyme to facilitate the conversion of pyruvate to formate and acetyl-CoA, as well as its reverse reaction, in anaerobic and microaerobic prokaryotes. Because of the importance in formate metabolism in microorganisms, PFLs have had many potential applications in biological synthesis, environmental improvement, and medical treatment. Furthermore, formate is a direct product of CO<sub>2</sub> reduction via the catalysis of formate dehydrogenase or chemical conversion, thus suggesting potential applications for PFLs in CO<sub>2</sub> utilization by <em>in vivo</em> cascades or <em>in vitro</em> chemo-enzymatic reaction sequences, which, however, has not received attention to date. In this review, we summarize recent progress in the characterization and functionality of PFLs and consider potential applications of these enzymes. The directions of future research and possible challenges to the application of PFLs are also discussed.</div></div>","PeriodicalId":15759,"journal":{"name":"Journal of Environmental Chemical Engineering","volume":"12 6","pages":"Article 114737"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyruvate-formate lyase and beyond\",\"authors\":\"Xuan Zhang ,&nbsp;Wei Ye ,&nbsp;Weihong Jiang ,&nbsp;Yang Gu\",\"doi\":\"10.1016/j.jece.2024.114737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Pyruvate-formate lyases (PFLs) are crucial catalysts that employ both a core enzyme and an activating enzyme to facilitate the conversion of pyruvate to formate and acetyl-CoA, as well as its reverse reaction, in anaerobic and microaerobic prokaryotes. Because of the importance in formate metabolism in microorganisms, PFLs have had many potential applications in biological synthesis, environmental improvement, and medical treatment. Furthermore, formate is a direct product of CO<sub>2</sub> reduction via the catalysis of formate dehydrogenase or chemical conversion, thus suggesting potential applications for PFLs in CO<sub>2</sub> utilization by <em>in vivo</em> cascades or <em>in vitro</em> chemo-enzymatic reaction sequences, which, however, has not received attention to date. In this review, we summarize recent progress in the characterization and functionality of PFLs and consider potential applications of these enzymes. The directions of future research and possible challenges to the application of PFLs are also discussed.</div></div>\",\"PeriodicalId\":15759,\"journal\":{\"name\":\"Journal of Environmental Chemical Engineering\",\"volume\":\"12 6\",\"pages\":\"Article 114737\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Environmental Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2213343724028690\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Environmental Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2213343724028690","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

丙酮酸-甲酸裂解酶(PFLs)是一种重要的催化剂,它利用核心酶和活化酶促进厌氧和微需氧原核生物将丙酮酸转化为甲酸和乙酰-CoA,并促进其逆反应。由于甲酸盐代谢在微生物中的重要性,PFLs 在生物合成、环境改善和医疗方面有许多潜在的应用。此外,通过甲酸脱氢酶的催化或化学转化,甲酸盐是二氧化碳还原的直接产物,因此 PFLs 有可能通过体内级联反应或体外化学酶反应序列应用于二氧化碳的利用,但迄今为止这一点尚未受到关注。在这篇综述中,我们总结了 PFLs 特性和功能方面的最新进展,并考虑了这些酶的潜在应用。此外,还讨论了未来的研究方向以及 PFLs 应用可能面临的挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pyruvate-formate lyase and beyond
Pyruvate-formate lyases (PFLs) are crucial catalysts that employ both a core enzyme and an activating enzyme to facilitate the conversion of pyruvate to formate and acetyl-CoA, as well as its reverse reaction, in anaerobic and microaerobic prokaryotes. Because of the importance in formate metabolism in microorganisms, PFLs have had many potential applications in biological synthesis, environmental improvement, and medical treatment. Furthermore, formate is a direct product of CO2 reduction via the catalysis of formate dehydrogenase or chemical conversion, thus suggesting potential applications for PFLs in CO2 utilization by in vivo cascades or in vitro chemo-enzymatic reaction sequences, which, however, has not received attention to date. In this review, we summarize recent progress in the characterization and functionality of PFLs and consider potential applications of these enzymes. The directions of future research and possible challenges to the application of PFLs are also discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Environmental Chemical Engineering
Journal of Environmental Chemical Engineering Environmental Science-Pollution
CiteScore
11.40
自引率
6.50%
发文量
2017
审稿时长
27 days
期刊介绍: The Journal of Environmental Chemical Engineering (JECE) serves as a platform for the dissemination of original and innovative research focusing on the advancement of environmentally-friendly, sustainable technologies. JECE emphasizes the transition towards a carbon-neutral circular economy and a self-sufficient bio-based economy. Topics covered include soil, water, wastewater, and air decontamination; pollution monitoring, prevention, and control; advanced analytics, sensors, impact and risk assessment methodologies in environmental chemical engineering; resource recovery (water, nutrients, materials, energy); industrial ecology; valorization of waste streams; waste management (including e-waste); climate-water-energy-food nexus; novel materials for environmental, chemical, and energy applications; sustainability and environmental safety; water digitalization, water data science, and machine learning; process integration and intensification; recent developments in green chemistry for synthesis, catalysis, and energy; and original research on contaminants of emerging concern, persistent chemicals, and priority substances, including microplastics, nanoplastics, nanomaterials, micropollutants, antimicrobial resistance genes, and emerging pathogens (viruses, bacteria, parasites) of environmental significance.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信