论非线性马勒方程的形式幂级数解的存在性和收敛性

IF 0.6 4区 数学 Q4 COMPUTER SCIENCE, THEORY & METHODS
Renat Gontsov , Irina Goryuchkina
{"title":"论非线性马勒方程的形式幂级数解的存在性和收敛性","authors":"Renat Gontsov ,&nbsp;Irina Goryuchkina","doi":"10.1016/j.jsc.2024.102399","DOIUrl":null,"url":null,"abstract":"<div><div>As known, any formal power series solution <span><math><mi>φ</mi><mo>∈</mo><mi>C</mi><mo>[</mo><mo>[</mo><mi>x</mi><mo>]</mo><mo>]</mo></math></span> of an algebraic equation is convergent, as well as that of an analytic one. We study the convergence of formal power series solutions of Mahler functional equations <span><math><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>y</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>ℓ</mi></mrow></msup><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><mi>y</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msup><mo>)</mo><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, where <span><math><mi>ℓ</mi><mo>⩾</mo><mn>2</mn></math></span> is an integer and <em>F</em> is a holomorphic function near <span><math><mn>0</mn><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></msup></math></span>. Extending Bézivin's theorem from the polynomial case to the case under consideration we prove that all such solutions are also convergent. The Newton polygonal method for finding them is explained.</div></div>","PeriodicalId":50031,"journal":{"name":"Journal of Symbolic Computation","volume":"128 ","pages":"Article 102399"},"PeriodicalIF":0.6000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the existence and convergence of formal power series solutions of nonlinear Mahler equations\",\"authors\":\"Renat Gontsov ,&nbsp;Irina Goryuchkina\",\"doi\":\"10.1016/j.jsc.2024.102399\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>As known, any formal power series solution <span><math><mi>φ</mi><mo>∈</mo><mi>C</mi><mo>[</mo><mo>[</mo><mi>x</mi><mo>]</mo><mo>]</mo></math></span> of an algebraic equation is convergent, as well as that of an analytic one. We study the convergence of formal power series solutions of Mahler functional equations <span><math><mi>F</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>y</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>,</mo><mi>y</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><mi>ℓ</mi></mrow></msup><mo>)</mo><mo>,</mo><mo>…</mo><mo>,</mo><mi>y</mi><mo>(</mo><msup><mrow><mi>x</mi></mrow><mrow><msup><mrow><mi>ℓ</mi></mrow><mrow><mi>n</mi></mrow></msup></mrow></msup><mo>)</mo><mo>)</mo><mo>=</mo><mn>0</mn></math></span>, where <span><math><mi>ℓ</mi><mo>⩾</mo><mn>2</mn></math></span> is an integer and <em>F</em> is a holomorphic function near <span><math><mn>0</mn><mo>∈</mo><msup><mrow><mi>C</mi></mrow><mrow><mi>n</mi><mo>+</mo><mn>2</mn></mrow></msup></math></span>. Extending Bézivin's theorem from the polynomial case to the case under consideration we prove that all such solutions are also convergent. The Newton polygonal method for finding them is explained.</div></div>\",\"PeriodicalId\":50031,\"journal\":{\"name\":\"Journal of Symbolic Computation\",\"volume\":\"128 \",\"pages\":\"Article 102399\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Symbolic Computation\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0747717124001032\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, THEORY & METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Symbolic Computation","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0747717124001032","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

摘要

众所周知,代数方程和解析方程的任何形式幂级数解 φ∈C[[x]] 都是收敛的。我们研究马勒函数方程 F(x,y(x),y(xℓ),...,y(xℓn))=0 的形式幂级数解的收敛性,其中 ℓ⩾2 是整数,F 是 0∈Cn+2 附近的全形函数。将贝齐文定理从多项式情况扩展到我们所考虑的情况,我们证明所有这些解也都是收敛的。我们还解释了找到这些解的牛顿多边形方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the existence and convergence of formal power series solutions of nonlinear Mahler equations
As known, any formal power series solution φC[[x]] of an algebraic equation is convergent, as well as that of an analytic one. We study the convergence of formal power series solutions of Mahler functional equations F(x,y(x),y(x),,y(xn))=0, where 2 is an integer and F is a holomorphic function near 0Cn+2. Extending Bézivin's theorem from the polynomial case to the case under consideration we prove that all such solutions are also convergent. The Newton polygonal method for finding them is explained.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Symbolic Computation
Journal of Symbolic Computation 工程技术-计算机:理论方法
CiteScore
2.10
自引率
14.30%
发文量
75
审稿时长
142 days
期刊介绍: An international journal, the Journal of Symbolic Computation, founded by Bruno Buchberger in 1985, is directed to mathematicians and computer scientists who have a particular interest in symbolic computation. The journal provides a forum for research in the algorithmic treatment of all types of symbolic objects: objects in formal languages (terms, formulas, programs); algebraic objects (elements in basic number domains, polynomials, residue classes, etc.); and geometrical objects. It is the explicit goal of the journal to promote the integration of symbolic computation by establishing one common avenue of communication for researchers working in the different subareas. It is also important that the algorithmic achievements of these areas should be made available to the human problem-solver in integrated software systems for symbolic computation. To help this integration, the journal publishes invited tutorial surveys as well as Applications Letters and System Descriptions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信