Pei Hang He , Hao Chi Zhang , Ling Yun Niu , Yi Fan , Da Yue Yao , Yifei Huang , Yiwen Liu , Wenxuan Tang , Tie Jun Cui
{"title":"可重构双模元波导","authors":"Pei Hang He , Hao Chi Zhang , Ling Yun Niu , Yi Fan , Da Yue Yao , Yifei Huang , Yiwen Liu , Wenxuan Tang , Tie Jun Cui","doi":"10.1016/j.matdes.2024.113447","DOIUrl":null,"url":null,"abstract":"<div><div>With the rapid growth of information flux, integrating more channels in limited spaces has been a critical requirement for highly-integrated long-range parallel transmissions. Although meta-waveguides, such as spoof surface plasmon polariton (SSPP) waveguides, can suppress crosstalk between adjacent channels, it is still urgent to seek new methods to further increase the number of channels without occupying additional space. Here, we propose a reconfigurable dual-mode meta-waveguide (RDMMW) by integrating diodes into meta-units, which supports two independent channels using two orthogonal modes. The RDMMW can be switched among dual-mode, even-mode, odd-mode and cutoff states by controlling the diodes, which provides more freedom to manipulate the channel features. The RDMMW possess two outstanding merits in highly-integrated long-range parallel transmissions, including lower coupling between two channels than conventional single-mode waveguides and constant mode coupling in longer waveguides. Thus the proposed RDMMW has advantages of multi-mode, reconfiguration, low coupling and high integration density, providing a new avenue to realize highly-integrated multi-functional systems.</div></div>","PeriodicalId":383,"journal":{"name":"Materials & Design","volume":"247 ","pages":"Article 113447"},"PeriodicalIF":7.6000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reconfigurable dual-mode meta-waveguide\",\"authors\":\"Pei Hang He , Hao Chi Zhang , Ling Yun Niu , Yi Fan , Da Yue Yao , Yifei Huang , Yiwen Liu , Wenxuan Tang , Tie Jun Cui\",\"doi\":\"10.1016/j.matdes.2024.113447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>With the rapid growth of information flux, integrating more channels in limited spaces has been a critical requirement for highly-integrated long-range parallel transmissions. Although meta-waveguides, such as spoof surface plasmon polariton (SSPP) waveguides, can suppress crosstalk between adjacent channels, it is still urgent to seek new methods to further increase the number of channels without occupying additional space. Here, we propose a reconfigurable dual-mode meta-waveguide (RDMMW) by integrating diodes into meta-units, which supports two independent channels using two orthogonal modes. The RDMMW can be switched among dual-mode, even-mode, odd-mode and cutoff states by controlling the diodes, which provides more freedom to manipulate the channel features. The RDMMW possess two outstanding merits in highly-integrated long-range parallel transmissions, including lower coupling between two channels than conventional single-mode waveguides and constant mode coupling in longer waveguides. Thus the proposed RDMMW has advantages of multi-mode, reconfiguration, low coupling and high integration density, providing a new avenue to realize highly-integrated multi-functional systems.</div></div>\",\"PeriodicalId\":383,\"journal\":{\"name\":\"Materials & Design\",\"volume\":\"247 \",\"pages\":\"Article 113447\"},\"PeriodicalIF\":7.6000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials & Design\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0264127524008220\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials & Design","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0264127524008220","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
With the rapid growth of information flux, integrating more channels in limited spaces has been a critical requirement for highly-integrated long-range parallel transmissions. Although meta-waveguides, such as spoof surface plasmon polariton (SSPP) waveguides, can suppress crosstalk between adjacent channels, it is still urgent to seek new methods to further increase the number of channels without occupying additional space. Here, we propose a reconfigurable dual-mode meta-waveguide (RDMMW) by integrating diodes into meta-units, which supports two independent channels using two orthogonal modes. The RDMMW can be switched among dual-mode, even-mode, odd-mode and cutoff states by controlling the diodes, which provides more freedom to manipulate the channel features. The RDMMW possess two outstanding merits in highly-integrated long-range parallel transmissions, including lower coupling between two channels than conventional single-mode waveguides and constant mode coupling in longer waveguides. Thus the proposed RDMMW has advantages of multi-mode, reconfiguration, low coupling and high integration density, providing a new avenue to realize highly-integrated multi-functional systems.
期刊介绍:
Materials and Design is a multi-disciplinary journal that publishes original research reports, review articles, and express communications. The journal focuses on studying the structure and properties of inorganic and organic materials, advancements in synthesis, processing, characterization, and testing, the design of materials and engineering systems, and their applications in technology. It aims to bring together various aspects of materials science, engineering, physics, and chemistry.
The journal explores themes ranging from materials to design and aims to reveal the connections between natural and artificial materials, as well as experiment and modeling. Manuscripts submitted to Materials and Design should contain elements of discovery and surprise, as they often contribute new insights into the architecture and function of matter.