人工智能时代的中药网络药理学

IF 4.7 4区 医学 Q1 CHEMISTRY, MEDICINAL
Weibo Zhao, Boyang Wang, Shao Li
{"title":"人工智能时代的中药网络药理学","authors":"Weibo Zhao,&nbsp;Boyang Wang,&nbsp;Shao Li","doi":"10.1016/j.chmed.2024.08.004","DOIUrl":null,"url":null,"abstract":"<div><h3>Abstract</h3><div>Traditional Chinese Medicine Network Pharmacology (TCM-NP) is an interdisciplinary discipline that integrates information science, systems biology, network science and pharmacology, providing a systematic research methodology for TCM studies. With the development of artificial intelligence (AI) and multi-omics technologies, TCM-NP has entered a new era and can incorporate multimodal and high-dimensional data in the context of big data to enhance both theoretical foundations and technical capabilities. Despite its advancement, TCM-NP still faces challenges, particularly in ensuring the quality of data and research, as well as achieving more profound scientific discoveries. The field needs further innovation to obtain more precise and biomedically meaningful results. Overall research progress in TCM-NP depends on developing more accurate algorithms together with utilizing higher-quality and larger-scale data. This paper gives a perspective on the trends and characteristics of TCM-NP development and application in the era of AI.</div></div>","PeriodicalId":9916,"journal":{"name":"Chinese Herbal Medicines","volume":"16 4","pages":"Pages 558-560"},"PeriodicalIF":4.7000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Network pharmacology for traditional Chinese medicine in era of artificial intelligence\",\"authors\":\"Weibo Zhao,&nbsp;Boyang Wang,&nbsp;Shao Li\",\"doi\":\"10.1016/j.chmed.2024.08.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h3>Abstract</h3><div>Traditional Chinese Medicine Network Pharmacology (TCM-NP) is an interdisciplinary discipline that integrates information science, systems biology, network science and pharmacology, providing a systematic research methodology for TCM studies. With the development of artificial intelligence (AI) and multi-omics technologies, TCM-NP has entered a new era and can incorporate multimodal and high-dimensional data in the context of big data to enhance both theoretical foundations and technical capabilities. Despite its advancement, TCM-NP still faces challenges, particularly in ensuring the quality of data and research, as well as achieving more profound scientific discoveries. The field needs further innovation to obtain more precise and biomedically meaningful results. Overall research progress in TCM-NP depends on developing more accurate algorithms together with utilizing higher-quality and larger-scale data. This paper gives a perspective on the trends and characteristics of TCM-NP development and application in the era of AI.</div></div>\",\"PeriodicalId\":9916,\"journal\":{\"name\":\"Chinese Herbal Medicines\",\"volume\":\"16 4\",\"pages\":\"Pages 558-560\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chinese Herbal Medicines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674638424000807\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chinese Herbal Medicines","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674638424000807","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要中药网络药理学(TCM-NP)是一门集信息科学、系统生物学、网络科学和药理学于一体的交叉学科,为中药研究提供了系统的研究方法。随着人工智能(AI)和多组学技术的发展,中医药网络药理学进入了一个新的时代,可以在大数据背景下纳入多模态和高维数据,提升理论基础和技术能力。尽管取得了进步,但中医药新药研究仍面临挑战,尤其是在确保数据和研究质量以及实现更深层次的科学发现方面。该领域需要进一步创新,以获得更精确、更有生物医学意义的结果。中医药基因组学的整体研究进展取决于开发更精确的算法以及利用更高质量和更大规模的数据。本文透视了人工智能时代中医药 NP 发展与应用的趋势和特点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Network pharmacology for traditional Chinese medicine in era of artificial intelligence

Abstract

Traditional Chinese Medicine Network Pharmacology (TCM-NP) is an interdisciplinary discipline that integrates information science, systems biology, network science and pharmacology, providing a systematic research methodology for TCM studies. With the development of artificial intelligence (AI) and multi-omics technologies, TCM-NP has entered a new era and can incorporate multimodal and high-dimensional data in the context of big data to enhance both theoretical foundations and technical capabilities. Despite its advancement, TCM-NP still faces challenges, particularly in ensuring the quality of data and research, as well as achieving more profound scientific discoveries. The field needs further innovation to obtain more precise and biomedically meaningful results. Overall research progress in TCM-NP depends on developing more accurate algorithms together with utilizing higher-quality and larger-scale data. This paper gives a perspective on the trends and characteristics of TCM-NP development and application in the era of AI.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chinese Herbal Medicines
Chinese Herbal Medicines CHEMISTRY, MEDICINAL-
CiteScore
4.40
自引率
5.30%
发文量
629
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信