Xin Yu , Zhengyi Zhao , Guofei Zhang , Sirong Li , Yanzhi Yang , Zhiyong Yan , Xin Tian , Xuechun Xiao
{"title":"基于中空球形 MnCo2O4.5 的高氯酸铵在碳缺陷和形貌调制条件下的高效热分解","authors":"Xin Yu , Zhengyi Zhao , Guofei Zhang , Sirong Li , Yanzhi Yang , Zhiyong Yan , Xin Tian , Xuechun Xiao","doi":"10.1016/j.fuel.2024.133666","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, a one-step preparation of carbon-rich MnCo<sub>2</sub>O<sub>4.5</sub> precursors are achieved by adding glucose in a hydrothermal environment. Subsequently, MnCo<sub>2</sub>O<sub>4.5</sub> catalytic materials with different carbon defect contents are obtained by controlling the calcination temperature, which enables the simultaneous release of great heat during the thermal decomposition of catalytic AP. This specially designed MnCo<sub>2</sub>O<sub>4.5</sub> catalytic material has a hollow structure and exhibits good dispersion and a large specific surface area. The high-temperature decomposition temperature (<em>T<sub>HTD</sub></em>) of ammonium perchlorate (AP) is reduced from 473.48 ℃ to 301.32 ℃ after adding 2 wt% catalytic materials. The catalytic materials resulte in a threefold increase in the decomposition heat release of AP (from 888.26 J·g<sup>−1</sup> to 2616.98 J·g<sup>−1</sup>). It also reduced the activation energy (<em>E<sub>a</sub></em>) by half, from 296.8 kJ·mol<sup>−1</sup> to 146.2 kJ·mol<sup>−1</sup>, greatly facilitating the reaction. Consequently, the reaction rate (<em>k</em>) is doubled, from 0.44 s<sup>−1</sup> to 0.97 s<sup>−1</sup>. The bimetallic synergistic effect of MnCo<sub>2</sub>O<sub>4.5</sub> itself, combined with the carbon material, significantly improved its performance in catalysing the thermal decomposition of AP. In addition, the combustion of carbon materials not only provides additional heat for AP pyrolysis but also further enhances the combustion of the Hydroxy Terminated Polybutadiene Composite Solid Propellant (HTPB-CSP) system. The introduction of this catalytic material reduces the CSP ignition delay time by 13 ms, allowing for a faster and more intense combustion process.</div></div>","PeriodicalId":325,"journal":{"name":"Fuel","volume":"381 ","pages":"Article 133666"},"PeriodicalIF":6.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Efficient thermal decomposition of ammonium perchlorate based on hollow spherical MnCo2O4.5 under carbon defect and morphology modulation\",\"authors\":\"Xin Yu , Zhengyi Zhao , Guofei Zhang , Sirong Li , Yanzhi Yang , Zhiyong Yan , Xin Tian , Xuechun Xiao\",\"doi\":\"10.1016/j.fuel.2024.133666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, a one-step preparation of carbon-rich MnCo<sub>2</sub>O<sub>4.5</sub> precursors are achieved by adding glucose in a hydrothermal environment. Subsequently, MnCo<sub>2</sub>O<sub>4.5</sub> catalytic materials with different carbon defect contents are obtained by controlling the calcination temperature, which enables the simultaneous release of great heat during the thermal decomposition of catalytic AP. This specially designed MnCo<sub>2</sub>O<sub>4.5</sub> catalytic material has a hollow structure and exhibits good dispersion and a large specific surface area. The high-temperature decomposition temperature (<em>T<sub>HTD</sub></em>) of ammonium perchlorate (AP) is reduced from 473.48 ℃ to 301.32 ℃ after adding 2 wt% catalytic materials. The catalytic materials resulte in a threefold increase in the decomposition heat release of AP (from 888.26 J·g<sup>−1</sup> to 2616.98 J·g<sup>−1</sup>). It also reduced the activation energy (<em>E<sub>a</sub></em>) by half, from 296.8 kJ·mol<sup>−1</sup> to 146.2 kJ·mol<sup>−1</sup>, greatly facilitating the reaction. Consequently, the reaction rate (<em>k</em>) is doubled, from 0.44 s<sup>−1</sup> to 0.97 s<sup>−1</sup>. The bimetallic synergistic effect of MnCo<sub>2</sub>O<sub>4.5</sub> itself, combined with the carbon material, significantly improved its performance in catalysing the thermal decomposition of AP. In addition, the combustion of carbon materials not only provides additional heat for AP pyrolysis but also further enhances the combustion of the Hydroxy Terminated Polybutadiene Composite Solid Propellant (HTPB-CSP) system. The introduction of this catalytic material reduces the CSP ignition delay time by 13 ms, allowing for a faster and more intense combustion process.</div></div>\",\"PeriodicalId\":325,\"journal\":{\"name\":\"Fuel\",\"volume\":\"381 \",\"pages\":\"Article 133666\"},\"PeriodicalIF\":6.7000,\"publicationDate\":\"2024-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuel\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0016236124028151\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuel","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0016236124028151","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Efficient thermal decomposition of ammonium perchlorate based on hollow spherical MnCo2O4.5 under carbon defect and morphology modulation
In this study, a one-step preparation of carbon-rich MnCo2O4.5 precursors are achieved by adding glucose in a hydrothermal environment. Subsequently, MnCo2O4.5 catalytic materials with different carbon defect contents are obtained by controlling the calcination temperature, which enables the simultaneous release of great heat during the thermal decomposition of catalytic AP. This specially designed MnCo2O4.5 catalytic material has a hollow structure and exhibits good dispersion and a large specific surface area. The high-temperature decomposition temperature (THTD) of ammonium perchlorate (AP) is reduced from 473.48 ℃ to 301.32 ℃ after adding 2 wt% catalytic materials. The catalytic materials resulte in a threefold increase in the decomposition heat release of AP (from 888.26 J·g−1 to 2616.98 J·g−1). It also reduced the activation energy (Ea) by half, from 296.8 kJ·mol−1 to 146.2 kJ·mol−1, greatly facilitating the reaction. Consequently, the reaction rate (k) is doubled, from 0.44 s−1 to 0.97 s−1. The bimetallic synergistic effect of MnCo2O4.5 itself, combined with the carbon material, significantly improved its performance in catalysing the thermal decomposition of AP. In addition, the combustion of carbon materials not only provides additional heat for AP pyrolysis but also further enhances the combustion of the Hydroxy Terminated Polybutadiene Composite Solid Propellant (HTPB-CSP) system. The introduction of this catalytic material reduces the CSP ignition delay time by 13 ms, allowing for a faster and more intense combustion process.
期刊介绍:
The exploration of energy sources remains a critical matter of study. For the past nine decades, fuel has consistently held the forefront in primary research efforts within the field of energy science. This area of investigation encompasses a wide range of subjects, with a particular emphasis on emerging concerns like environmental factors and pollution.