Yanan Miao , Haoran Li , Mingzhu Zhu , Chaojie Zhao , Tengwen Zhang , Hussein Mohammed Ahmed Kaid
{"title":"煤炭注水过程中表面活性剂对渗流规律影响的中尺度建模","authors":"Yanan Miao , Haoran Li , Mingzhu Zhu , Chaojie Zhao , Tengwen Zhang , Hussein Mohammed Ahmed Kaid","doi":"10.1016/j.partic.2024.10.014","DOIUrl":null,"url":null,"abstract":"<div><div>To investigate the mesoscopic influence of surfactants on seepage law during water injection in coal seam, this paper innovatively establishes a fluid transport lattice Boltzmann (LBM) model by incorporating the seepage resistance generated from the porous media and external forces, which embodies the impact of wettability degree resulted from cocamidopropyl betaine (CAB), sodium dodecyl sulfate (SDS), and coconutt diethanol amide (CDEA) reagents at a 0.1% concentration. The main conclusions derived from this investigation are as follows: Firstly, as the lattice number in the X direction increases, the average seepage velocities in coal samples treated by deionized water, 0.1% CAB, 0.1% SDS, and 0.1% CDEA reagents (Nos. 1, 2, 3, and 4) exhibit three distinct stages: rapid decline, slow decline, and steady decline; in comparison to raw coal sample, modified coal samples demonstrate decreases of 20.84%, 33.91%, and 61.70%, respectively. Secondly, the critical values of displacement pressure difference exist during the phenomenon that modified reagents spread out in the entire flow channel, which are 3.5, 3.5, and 5.2 MPa, respectively, for coal samples Nos. 2, 3, and 4; this signifies that surpassing these critical values help prevent issues such as blank belts within the wetting range and insufficient dust control. Finally, at a displacement pressure difference of 0.01 (lattice unit), the average velocity ratios for samples (Nos. 2, 3, and 4) are 0.78, 0.56, and 0.37 (lattice unit), respectively; notably, the water flow velocities in modified coal samples are lower compared to that in raw coal sample, indicating that the addition of surfactants impede the seepage process of water injection in coal seam. Moreover, when the displacement pressure difference reaches 0.03 (lattice unit), the velocity ratio of CDEA-modified coal sample exceeds 100%; this means that when the displacement pressure difference surpasses 15.6 MPa, the water injection effect of CDEA-modified coal sample begins to be improved. These research findings offer a theoretical basis for enhancing water injection technology in coal mines.</div></div>","PeriodicalId":401,"journal":{"name":"Particuology","volume":"96 ","pages":"Pages 1-13"},"PeriodicalIF":4.1000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mesoscale modeling on the influence of surfactants on seepage law during water injection in coal\",\"authors\":\"Yanan Miao , Haoran Li , Mingzhu Zhu , Chaojie Zhao , Tengwen Zhang , Hussein Mohammed Ahmed Kaid\",\"doi\":\"10.1016/j.partic.2024.10.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>To investigate the mesoscopic influence of surfactants on seepage law during water injection in coal seam, this paper innovatively establishes a fluid transport lattice Boltzmann (LBM) model by incorporating the seepage resistance generated from the porous media and external forces, which embodies the impact of wettability degree resulted from cocamidopropyl betaine (CAB), sodium dodecyl sulfate (SDS), and coconutt diethanol amide (CDEA) reagents at a 0.1% concentration. The main conclusions derived from this investigation are as follows: Firstly, as the lattice number in the X direction increases, the average seepage velocities in coal samples treated by deionized water, 0.1% CAB, 0.1% SDS, and 0.1% CDEA reagents (Nos. 1, 2, 3, and 4) exhibit three distinct stages: rapid decline, slow decline, and steady decline; in comparison to raw coal sample, modified coal samples demonstrate decreases of 20.84%, 33.91%, and 61.70%, respectively. Secondly, the critical values of displacement pressure difference exist during the phenomenon that modified reagents spread out in the entire flow channel, which are 3.5, 3.5, and 5.2 MPa, respectively, for coal samples Nos. 2, 3, and 4; this signifies that surpassing these critical values help prevent issues such as blank belts within the wetting range and insufficient dust control. Finally, at a displacement pressure difference of 0.01 (lattice unit), the average velocity ratios for samples (Nos. 2, 3, and 4) are 0.78, 0.56, and 0.37 (lattice unit), respectively; notably, the water flow velocities in modified coal samples are lower compared to that in raw coal sample, indicating that the addition of surfactants impede the seepage process of water injection in coal seam. Moreover, when the displacement pressure difference reaches 0.03 (lattice unit), the velocity ratio of CDEA-modified coal sample exceeds 100%; this means that when the displacement pressure difference surpasses 15.6 MPa, the water injection effect of CDEA-modified coal sample begins to be improved. These research findings offer a theoretical basis for enhancing water injection technology in coal mines.</div></div>\",\"PeriodicalId\":401,\"journal\":{\"name\":\"Particuology\",\"volume\":\"96 \",\"pages\":\"Pages 1-13\"},\"PeriodicalIF\":4.1000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particuology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1674200124002141\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particuology","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1674200124002141","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Mesoscale modeling on the influence of surfactants on seepage law during water injection in coal
To investigate the mesoscopic influence of surfactants on seepage law during water injection in coal seam, this paper innovatively establishes a fluid transport lattice Boltzmann (LBM) model by incorporating the seepage resistance generated from the porous media and external forces, which embodies the impact of wettability degree resulted from cocamidopropyl betaine (CAB), sodium dodecyl sulfate (SDS), and coconutt diethanol amide (CDEA) reagents at a 0.1% concentration. The main conclusions derived from this investigation are as follows: Firstly, as the lattice number in the X direction increases, the average seepage velocities in coal samples treated by deionized water, 0.1% CAB, 0.1% SDS, and 0.1% CDEA reagents (Nos. 1, 2, 3, and 4) exhibit three distinct stages: rapid decline, slow decline, and steady decline; in comparison to raw coal sample, modified coal samples demonstrate decreases of 20.84%, 33.91%, and 61.70%, respectively. Secondly, the critical values of displacement pressure difference exist during the phenomenon that modified reagents spread out in the entire flow channel, which are 3.5, 3.5, and 5.2 MPa, respectively, for coal samples Nos. 2, 3, and 4; this signifies that surpassing these critical values help prevent issues such as blank belts within the wetting range and insufficient dust control. Finally, at a displacement pressure difference of 0.01 (lattice unit), the average velocity ratios for samples (Nos. 2, 3, and 4) are 0.78, 0.56, and 0.37 (lattice unit), respectively; notably, the water flow velocities in modified coal samples are lower compared to that in raw coal sample, indicating that the addition of surfactants impede the seepage process of water injection in coal seam. Moreover, when the displacement pressure difference reaches 0.03 (lattice unit), the velocity ratio of CDEA-modified coal sample exceeds 100%; this means that when the displacement pressure difference surpasses 15.6 MPa, the water injection effect of CDEA-modified coal sample begins to be improved. These research findings offer a theoretical basis for enhancing water injection technology in coal mines.
期刊介绍:
The word ‘particuology’ was coined to parallel the discipline for the science and technology of particles.
Particuology is an interdisciplinary journal that publishes frontier research articles and critical reviews on the discovery, formulation and engineering of particulate materials, processes and systems. It especially welcomes contributions utilising advanced theoretical, modelling and measurement methods to enable the discovery and creation of new particulate materials, and the manufacturing of functional particulate-based products, such as sensors.
Papers are handled by Thematic Editors who oversee contributions from specific subject fields. These fields are classified into: Particle Synthesis and Modification; Particle Characterization and Measurement; Granular Systems and Bulk Solids Technology; Fluidization and Particle-Fluid Systems; Aerosols; and Applications of Particle Technology.
Key topics concerning the creation and processing of particulates include:
-Modelling and simulation of particle formation, collective behaviour of particles and systems for particle production over a broad spectrum of length scales
-Mining of experimental data for particle synthesis and surface properties to facilitate the creation of new materials and processes
-Particle design and preparation including controlled response and sensing functionalities in formation, delivery systems and biological systems, etc.
-Experimental and computational methods for visualization and analysis of particulate system.
These topics are broadly relevant to the production of materials, pharmaceuticals and food, and to the conversion of energy resources to fuels and protection of the environment.