Junhua Liu , Ying Wu , Fengwei Yan , Yu Yan , Fei Wang , Guangchao Zhang , Ling Zeng , Yin Ma , Jiahao Guo , Yuchun Li
{"title":"使用掺杂石墨烯的无机富锌涂层增强 Q355B 钢在海洋环境中的耐腐蚀性能","authors":"Junhua Liu , Ying Wu , Fengwei Yan , Yu Yan , Fei Wang , Guangchao Zhang , Ling Zeng , Yin Ma , Jiahao Guo , Yuchun Li","doi":"10.1016/j.ijoes.2024.100872","DOIUrl":null,"url":null,"abstract":"<div><div>Prolonged exposure of Q355B steel to the marine environment renders it susceptible to corrosion from seawater salt spray. In this study, inorganic zinc-rich coatings incorporating different components of graphene and calcium carbonate as anti-corrosion strategy were designed and aimed to improving their corrosion resistance. The anti-corrosion performance of these coating on Q355B was evaluated using scanning electron microscopy (SEM), X-ray diffraction (XRD), Potentiodynamic polarization tests and electrochemical impedance spectroscopy. Results indicated that the coating of 2G-1.5CaCO<sub>3</sub>-ZRC exhibited a corrosion current density of 1.565 × 10<sup>−5</sup>A cm<sup>−2</sup> and an impedance value of 734.6 Ω after immersion in simulated seawater solution for seven days. Compared with the untreated coating, this formulation demonstrated reduced corrosion current density and increased impedance values, indicating that the incorporation of graphene and calcium carbonate effectively mitigated corrosion rates while prolonging the materials protection duration. This work delivers the potential application in the field of protection for metal structures in seaport areas.</div></div>","PeriodicalId":13872,"journal":{"name":"International Journal of Electrochemical Science","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing corrosion resistance of Q355B steel in marine environments using graphene doped inorganic zinc-rich coatings\",\"authors\":\"Junhua Liu , Ying Wu , Fengwei Yan , Yu Yan , Fei Wang , Guangchao Zhang , Ling Zeng , Yin Ma , Jiahao Guo , Yuchun Li\",\"doi\":\"10.1016/j.ijoes.2024.100872\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Prolonged exposure of Q355B steel to the marine environment renders it susceptible to corrosion from seawater salt spray. In this study, inorganic zinc-rich coatings incorporating different components of graphene and calcium carbonate as anti-corrosion strategy were designed and aimed to improving their corrosion resistance. The anti-corrosion performance of these coating on Q355B was evaluated using scanning electron microscopy (SEM), X-ray diffraction (XRD), Potentiodynamic polarization tests and electrochemical impedance spectroscopy. Results indicated that the coating of 2G-1.5CaCO<sub>3</sub>-ZRC exhibited a corrosion current density of 1.565 × 10<sup>−5</sup>A cm<sup>−2</sup> and an impedance value of 734.6 Ω after immersion in simulated seawater solution for seven days. Compared with the untreated coating, this formulation demonstrated reduced corrosion current density and increased impedance values, indicating that the incorporation of graphene and calcium carbonate effectively mitigated corrosion rates while prolonging the materials protection duration. This work delivers the potential application in the field of protection for metal structures in seaport areas.</div></div>\",\"PeriodicalId\":13872,\"journal\":{\"name\":\"International Journal of Electrochemical Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-11-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Electrochemical Science\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1452398124004164\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Electrochemical Science","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1452398124004164","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
Enhancing corrosion resistance of Q355B steel in marine environments using graphene doped inorganic zinc-rich coatings
Prolonged exposure of Q355B steel to the marine environment renders it susceptible to corrosion from seawater salt spray. In this study, inorganic zinc-rich coatings incorporating different components of graphene and calcium carbonate as anti-corrosion strategy were designed and aimed to improving their corrosion resistance. The anti-corrosion performance of these coating on Q355B was evaluated using scanning electron microscopy (SEM), X-ray diffraction (XRD), Potentiodynamic polarization tests and electrochemical impedance spectroscopy. Results indicated that the coating of 2G-1.5CaCO3-ZRC exhibited a corrosion current density of 1.565 × 10−5A cm−2 and an impedance value of 734.6 Ω after immersion in simulated seawater solution for seven days. Compared with the untreated coating, this formulation demonstrated reduced corrosion current density and increased impedance values, indicating that the incorporation of graphene and calcium carbonate effectively mitigated corrosion rates while prolonging the materials protection duration. This work delivers the potential application in the field of protection for metal structures in seaport areas.
期刊介绍:
International Journal of Electrochemical Science is a peer-reviewed, open access journal that publishes original research articles, short communications as well as review articles in all areas of electrochemistry: Scope - Theoretical and Computational Electrochemistry - Processes on Electrodes - Electroanalytical Chemistry and Sensor Science - Corrosion - Electrochemical Energy Conversion and Storage - Electrochemical Engineering - Coatings - Electrochemical Synthesis - Bioelectrochemistry - Molecular Electrochemistry