Lei Yang , Zhuo Liu , Pengjie Rong , Shuqiong Luo , Xuemao Guan , Jianping Zhu , Xiangming Zhou , Songhui Liu , Genshen Li
{"title":"添加硫酸镁优化低钙水泥基材料的碳化效率和机械性能","authors":"Lei Yang , Zhuo Liu , Pengjie Rong , Shuqiong Luo , Xuemao Guan , Jianping Zhu , Xiangming Zhou , Songhui Liu , Genshen Li","doi":"10.1016/j.conbuildmat.2024.139148","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the effects of magnesium sulfate (MgSO<sub>4</sub>) addition on the carbonation efficiency and mechanical properties of low-calcium CO<sub>2</sub>-sequestering cementitious material (LCC), which is prepared by calcining a mixture of 78.2% limestone and 21.8% sandstone at 1275 °C for 2 h. LCC samples were prepared with varying concentrations of MgSO<sub>4</sub> solution (0, 0.5, 1, 2, and 3 mol/L) and subjected to CO<sub>2</sub> curing for 24 h. The carbonation behavior, compressive strength, and microstructural characteristics were examined using XRD, TGA, FT-IR, SEM, and LF NMR techniques in combination. Results demonstrate that the addition of MgSO<sub>4</sub> significantly influences the carbonation process and mechanical performance of LCC. Optimum performance was achieved after subjecting the paste prepared with LCC at a concentration of 0.5 mol/L MgSO<sub>4</sub> to a carbonation period lasting 24 h. This resulted in a notable increase in compressive strength by approximately 28% (145 MPa) compared to control samples along with an observed enhancement in CO<sub>2</sub> uptake by around 4%. Microstructural analysis reveals that the inclusion of MgSO<sub>4</sub> promoted the formation of more stable carbonate phases such as Mg-calcite and vaterite while also enhancing silica gel polymerization within the matrix structure of LCC materials. Additionally, it was found excessive concentrations (>1 mol/L) of MgSO<sub>4</sub> led to decreased carbonation efficiency and reduced strength due to gypsum formation as well as limited pore water availability. This study provides valuable insights into optimizing the carbonation process of LCC materials while demonstrating the potential efficacy of MgSO<sub>4</sub> as an effective additive for enhancing the performance of low-carbon CO<sub>2</sub>-sequestering cementitious materials.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"454 ","pages":"Article 139148"},"PeriodicalIF":7.4000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing carbonation efficiency and mechanical properties of low-calcium cementitious materials with MgSO4 addition\",\"authors\":\"Lei Yang , Zhuo Liu , Pengjie Rong , Shuqiong Luo , Xuemao Guan , Jianping Zhu , Xiangming Zhou , Songhui Liu , Genshen Li\",\"doi\":\"10.1016/j.conbuildmat.2024.139148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study investigates the effects of magnesium sulfate (MgSO<sub>4</sub>) addition on the carbonation efficiency and mechanical properties of low-calcium CO<sub>2</sub>-sequestering cementitious material (LCC), which is prepared by calcining a mixture of 78.2% limestone and 21.8% sandstone at 1275 °C for 2 h. LCC samples were prepared with varying concentrations of MgSO<sub>4</sub> solution (0, 0.5, 1, 2, and 3 mol/L) and subjected to CO<sub>2</sub> curing for 24 h. The carbonation behavior, compressive strength, and microstructural characteristics were examined using XRD, TGA, FT-IR, SEM, and LF NMR techniques in combination. Results demonstrate that the addition of MgSO<sub>4</sub> significantly influences the carbonation process and mechanical performance of LCC. Optimum performance was achieved after subjecting the paste prepared with LCC at a concentration of 0.5 mol/L MgSO<sub>4</sub> to a carbonation period lasting 24 h. This resulted in a notable increase in compressive strength by approximately 28% (145 MPa) compared to control samples along with an observed enhancement in CO<sub>2</sub> uptake by around 4%. Microstructural analysis reveals that the inclusion of MgSO<sub>4</sub> promoted the formation of more stable carbonate phases such as Mg-calcite and vaterite while also enhancing silica gel polymerization within the matrix structure of LCC materials. Additionally, it was found excessive concentrations (>1 mol/L) of MgSO<sub>4</sub> led to decreased carbonation efficiency and reduced strength due to gypsum formation as well as limited pore water availability. This study provides valuable insights into optimizing the carbonation process of LCC materials while demonstrating the potential efficacy of MgSO<sub>4</sub> as an effective additive for enhancing the performance of low-carbon CO<sub>2</sub>-sequestering cementitious materials.</div></div>\",\"PeriodicalId\":288,\"journal\":{\"name\":\"Construction and Building Materials\",\"volume\":\"454 \",\"pages\":\"Article 139148\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Construction and Building Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0950061824042909\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CONSTRUCTION & BUILDING TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061824042909","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
Optimizing carbonation efficiency and mechanical properties of low-calcium cementitious materials with MgSO4 addition
This study investigates the effects of magnesium sulfate (MgSO4) addition on the carbonation efficiency and mechanical properties of low-calcium CO2-sequestering cementitious material (LCC), which is prepared by calcining a mixture of 78.2% limestone and 21.8% sandstone at 1275 °C for 2 h. LCC samples were prepared with varying concentrations of MgSO4 solution (0, 0.5, 1, 2, and 3 mol/L) and subjected to CO2 curing for 24 h. The carbonation behavior, compressive strength, and microstructural characteristics were examined using XRD, TGA, FT-IR, SEM, and LF NMR techniques in combination. Results demonstrate that the addition of MgSO4 significantly influences the carbonation process and mechanical performance of LCC. Optimum performance was achieved after subjecting the paste prepared with LCC at a concentration of 0.5 mol/L MgSO4 to a carbonation period lasting 24 h. This resulted in a notable increase in compressive strength by approximately 28% (145 MPa) compared to control samples along with an observed enhancement in CO2 uptake by around 4%. Microstructural analysis reveals that the inclusion of MgSO4 promoted the formation of more stable carbonate phases such as Mg-calcite and vaterite while also enhancing silica gel polymerization within the matrix structure of LCC materials. Additionally, it was found excessive concentrations (>1 mol/L) of MgSO4 led to decreased carbonation efficiency and reduced strength due to gypsum formation as well as limited pore water availability. This study provides valuable insights into optimizing the carbonation process of LCC materials while demonstrating the potential efficacy of MgSO4 as an effective additive for enhancing the performance of low-carbon CO2-sequestering cementitious materials.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.