Ahmet Balcı , Adem Çiçek , Necati Uçak , Kubilay Aslantas
{"title":"研究热处理和热等静压对激光粉末床熔融制造的 Ti6Al4V 合金微钻孔的影响","authors":"Ahmet Balcı , Adem Çiçek , Necati Uçak , Kubilay Aslantas","doi":"10.1016/j.precisioneng.2024.10.016","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, micro-drilling performance of laser powder bed fusion (LPBF) Ti6Al4V alloy with heat treatment (HT) and hot isostatic pressing (HIP) post-processing conditions was investigated and compared to wrought material. The tests were performed at two spindle rotational speeds (5000 and 10,000 rev/min) and a feed per tooth (4 μm/tooth) under dry and minimum quantity lubrication (MQL) conditions using conventional drilling (CD) and peck drilling (PD) strategies. Micro-drilling performance was evaluated in terms of thrust force, surface roughness, subsurface microstructure and microhardness, burr formation, and tool wear. The test results showed that LPBF-HT and LPBF-HIP Ti6Al4V alloys exhibited different micro-drilling performances than the wrought material due to their different microstructural and mechanical properties. The LPBF-HIP Ti6Al4V characterized by higher strength and lamellar microstructure with higher <em>β</em> phase fraction (33.2 %) led to higher thrust force, lower surface quality and higher burr height. On the other hand, the wrought Ti6Al4V with higher ductility, lower hardness, and lower <em>β</em> phase fraction (16.3 %) showed lower thrust forces, surface roughness, and burr height. Notably, employing MQL conditions with the PD strategy provided good surface quality and reduced burr formation. A higher degree of tool wear was obtained in micro-drilling of LPBF-HIP Ti6Al4V. The major wear types were adhesion, BUE, and flank wear. Besides, chippings were observed in micro-drilling of LPBF-HT and LPBF-HIP Ti6Al4V.</div></div>","PeriodicalId":54589,"journal":{"name":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","volume":"91 ","pages":"Pages 617-631"},"PeriodicalIF":3.5000,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Investigation of the effects of heat treatment and hot isostatic pressing in micro-drilling of Ti6Al4V alloy fabricated by laser powder bed fusion\",\"authors\":\"Ahmet Balcı , Adem Çiçek , Necati Uçak , Kubilay Aslantas\",\"doi\":\"10.1016/j.precisioneng.2024.10.016\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In this study, micro-drilling performance of laser powder bed fusion (LPBF) Ti6Al4V alloy with heat treatment (HT) and hot isostatic pressing (HIP) post-processing conditions was investigated and compared to wrought material. The tests were performed at two spindle rotational speeds (5000 and 10,000 rev/min) and a feed per tooth (4 μm/tooth) under dry and minimum quantity lubrication (MQL) conditions using conventional drilling (CD) and peck drilling (PD) strategies. Micro-drilling performance was evaluated in terms of thrust force, surface roughness, subsurface microstructure and microhardness, burr formation, and tool wear. The test results showed that LPBF-HT and LPBF-HIP Ti6Al4V alloys exhibited different micro-drilling performances than the wrought material due to their different microstructural and mechanical properties. The LPBF-HIP Ti6Al4V characterized by higher strength and lamellar microstructure with higher <em>β</em> phase fraction (33.2 %) led to higher thrust force, lower surface quality and higher burr height. On the other hand, the wrought Ti6Al4V with higher ductility, lower hardness, and lower <em>β</em> phase fraction (16.3 %) showed lower thrust forces, surface roughness, and burr height. Notably, employing MQL conditions with the PD strategy provided good surface quality and reduced burr formation. A higher degree of tool wear was obtained in micro-drilling of LPBF-HIP Ti6Al4V. The major wear types were adhesion, BUE, and flank wear. Besides, chippings were observed in micro-drilling of LPBF-HT and LPBF-HIP Ti6Al4V.</div></div>\",\"PeriodicalId\":54589,\"journal\":{\"name\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"volume\":\"91 \",\"pages\":\"Pages 617-631\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-10-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141635924002435\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MANUFACTURING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Precision Engineering-Journal of the International Societies for Precision Engineering and Nanotechnology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141635924002435","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MANUFACTURING","Score":null,"Total":0}
Investigation of the effects of heat treatment and hot isostatic pressing in micro-drilling of Ti6Al4V alloy fabricated by laser powder bed fusion
In this study, micro-drilling performance of laser powder bed fusion (LPBF) Ti6Al4V alloy with heat treatment (HT) and hot isostatic pressing (HIP) post-processing conditions was investigated and compared to wrought material. The tests were performed at two spindle rotational speeds (5000 and 10,000 rev/min) and a feed per tooth (4 μm/tooth) under dry and minimum quantity lubrication (MQL) conditions using conventional drilling (CD) and peck drilling (PD) strategies. Micro-drilling performance was evaluated in terms of thrust force, surface roughness, subsurface microstructure and microhardness, burr formation, and tool wear. The test results showed that LPBF-HT and LPBF-HIP Ti6Al4V alloys exhibited different micro-drilling performances than the wrought material due to their different microstructural and mechanical properties. The LPBF-HIP Ti6Al4V characterized by higher strength and lamellar microstructure with higher β phase fraction (33.2 %) led to higher thrust force, lower surface quality and higher burr height. On the other hand, the wrought Ti6Al4V with higher ductility, lower hardness, and lower β phase fraction (16.3 %) showed lower thrust forces, surface roughness, and burr height. Notably, employing MQL conditions with the PD strategy provided good surface quality and reduced burr formation. A higher degree of tool wear was obtained in micro-drilling of LPBF-HIP Ti6Al4V. The major wear types were adhesion, BUE, and flank wear. Besides, chippings were observed in micro-drilling of LPBF-HT and LPBF-HIP Ti6Al4V.
期刊介绍:
Precision Engineering - Journal of the International Societies for Precision Engineering and Nanotechnology is devoted to the multidisciplinary study and practice of high accuracy engineering, metrology, and manufacturing. The journal takes an integrated approach to all subjects related to research, design, manufacture, performance validation, and application of high precision machines, instruments, and components, including fundamental and applied research and development in manufacturing processes, fabrication technology, and advanced measurement science. The scope includes precision-engineered systems and supporting metrology over the full range of length scales, from atom-based nanotechnology and advanced lithographic technology to large-scale systems, including optical and radio telescopes and macrometrology.