深度语义保全跨模态散列

IF 3.5 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Zhihui Lai , Xiaomei Fang , Heng Kong
{"title":"深度语义保全跨模态散列","authors":"Zhihui Lai ,&nbsp;Xiaomei Fang ,&nbsp;Heng Kong","doi":"10.1016/j.bdr.2024.100494","DOIUrl":null,"url":null,"abstract":"<div><div>Cross-modal hashing has been paid widespread attention in recent years due to its outstanding performance in cross-modal data retrieval. Cross-modal hashing can be decomposed into two steps, i.e., the feature learning and the binarization. However, most existing cross-modal hash methods do not take the supervisory information of the data into consideration during binary quantization, and thus often fail to adequately preserve semantic information. To solve these problems, this paper proposes a novel deep cross-modal hashing method called deep semantics-preserving cross-modal hashing (DSCMH), which makes full use of intra and inter-modal semantic information to improve the model's performance. Moreover, by designing a label network for semantic alignment during the binarization process, DSCMH's performance can be further improved. In order to verify the performance of the proposed method, extensive experiments were conducted on four big datasets. The results show that the proposed method is better than most of the existing cross-modal hashing methods. In addition, the ablation experiment shows that the proposed new regularized terms all have positive effects on the model's performances in cross-modal retrieval. The code of this paper can be downloaded from <span><span>http://www.scholat.com/laizhihui</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":56017,"journal":{"name":"Big Data Research","volume":"38 ","pages":"Article 100494"},"PeriodicalIF":3.5000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep semantics-preserving cross-modal hashing\",\"authors\":\"Zhihui Lai ,&nbsp;Xiaomei Fang ,&nbsp;Heng Kong\",\"doi\":\"10.1016/j.bdr.2024.100494\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Cross-modal hashing has been paid widespread attention in recent years due to its outstanding performance in cross-modal data retrieval. Cross-modal hashing can be decomposed into two steps, i.e., the feature learning and the binarization. However, most existing cross-modal hash methods do not take the supervisory information of the data into consideration during binary quantization, and thus often fail to adequately preserve semantic information. To solve these problems, this paper proposes a novel deep cross-modal hashing method called deep semantics-preserving cross-modal hashing (DSCMH), which makes full use of intra and inter-modal semantic information to improve the model's performance. Moreover, by designing a label network for semantic alignment during the binarization process, DSCMH's performance can be further improved. In order to verify the performance of the proposed method, extensive experiments were conducted on four big datasets. The results show that the proposed method is better than most of the existing cross-modal hashing methods. In addition, the ablation experiment shows that the proposed new regularized terms all have positive effects on the model's performances in cross-modal retrieval. The code of this paper can be downloaded from <span><span>http://www.scholat.com/laizhihui</span><svg><path></path></svg></span>.</div></div>\",\"PeriodicalId\":56017,\"journal\":{\"name\":\"Big Data Research\",\"volume\":\"38 \",\"pages\":\"Article 100494\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Big Data Research\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2214579624000698\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Big Data Research","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214579624000698","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

近年来,跨模态散列因其在跨模态数据检索中的出色表现而受到广泛关注。跨模态散列可以分解为两个步骤,即特征学习和二值化。然而,现有的大多数跨模态哈希方法在二进制量化时没有考虑数据的监督信息,因此往往不能充分保留语义信息。为了解决这些问题,本文提出了一种新颖的深度跨模态哈希方法,即深度语义保留跨模态哈希(DSCMH),它能充分利用模态内和模态间的语义信息来提高模型的性能。此外,通过在二值化过程中设计用于语义对齐的标签网络,DSCMH 的性能还能得到进一步提高。为了验证所提方法的性能,我们在四个大数据集上进行了大量实验。结果表明,所提出的方法优于大多数现有的跨模态哈希方法。此外,消融实验表明,所提出的新正则化项都对模型在跨模态检索中的性能产生了积极影响。本文代码可从 http://www.scholat.com/laizhihui 下载。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep semantics-preserving cross-modal hashing
Cross-modal hashing has been paid widespread attention in recent years due to its outstanding performance in cross-modal data retrieval. Cross-modal hashing can be decomposed into two steps, i.e., the feature learning and the binarization. However, most existing cross-modal hash methods do not take the supervisory information of the data into consideration during binary quantization, and thus often fail to adequately preserve semantic information. To solve these problems, this paper proposes a novel deep cross-modal hashing method called deep semantics-preserving cross-modal hashing (DSCMH), which makes full use of intra and inter-modal semantic information to improve the model's performance. Moreover, by designing a label network for semantic alignment during the binarization process, DSCMH's performance can be further improved. In order to verify the performance of the proposed method, extensive experiments were conducted on four big datasets. The results show that the proposed method is better than most of the existing cross-modal hashing methods. In addition, the ablation experiment shows that the proposed new regularized terms all have positive effects on the model's performances in cross-modal retrieval. The code of this paper can be downloaded from http://www.scholat.com/laizhihui.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Big Data Research
Big Data Research Computer Science-Computer Science Applications
CiteScore
8.40
自引率
3.00%
发文量
0
期刊介绍: The journal aims to promote and communicate advances in big data research by providing a fast and high quality forum for researchers, practitioners and policy makers from the very many different communities working on, and with, this topic. The journal will accept papers on foundational aspects in dealing with big data, as well as papers on specific Platforms and Technologies used to deal with big data. To promote Data Science and interdisciplinary collaboration between fields, and to showcase the benefits of data driven research, papers demonstrating applications of big data in domains as diverse as Geoscience, Social Web, Finance, e-Commerce, Health Care, Environment and Climate, Physics and Astronomy, Chemistry, life sciences and drug discovery, digital libraries and scientific publications, security and government will also be considered. Occasionally the journal may publish whitepapers on policies, standards and best practices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信