{"title":"对承受循环荷载的复合剪力墙行为的实验验证数值研究","authors":"M. Hasim Kisa , S. Bahadir Yuksel , Ramazan Özmen","doi":"10.1016/j.jestch.2024.101884","DOIUrl":null,"url":null,"abstract":"<div><div>Due to design considerations, reinforced concrete (RC) shear walls, with narrow cross-sections containing excessive steel reinforcing bars, are commonly used in tall buildings for seismic resistance to produce functional floor plans. However, as is particularly evident in the end region components of the RC shear walls, bulky reinforcement can lead to difficulties in concrete pouring and cause concrete segregation. Accordingly, this study concentrates on the numerical investigation of composite shear wall behavior created using cold-formed steel sheet (CFSS) elements under cyclic loading. Three composite shear wall test specimens, having L-shaped CFSSs utilized in the shear wall end regions, were modeled on a 1/3 scale with ABAQUS finite element analysis software. The specimens’ crack propagation behavior was investigated at each loading stage in the numerical analyses and validated with experiments. Furthermore, the lateral force-top displacement relationship was used to assess the wall’s behaviors. According to the results, the modeling approach accurately simulates the composite shear wall’s behavior. Finally, a parametric analysis was performed with the verified numerical simulations to examine the effect of the CFSS elements’ material properties on the composite shear walls. The parametric studies revealed that the steel sheets’ yield strength and position from the neutral axis affected the shear walls’ lateral load-bearing capacity.</div></div>","PeriodicalId":48609,"journal":{"name":"Engineering Science and Technology-An International Journal-Jestech","volume":"59 ","pages":"Article 101884"},"PeriodicalIF":5.1000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimentally validated numerical investigation on the behavior of composite shear walls subjected to cyclic loading\",\"authors\":\"M. Hasim Kisa , S. Bahadir Yuksel , Ramazan Özmen\",\"doi\":\"10.1016/j.jestch.2024.101884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Due to design considerations, reinforced concrete (RC) shear walls, with narrow cross-sections containing excessive steel reinforcing bars, are commonly used in tall buildings for seismic resistance to produce functional floor plans. However, as is particularly evident in the end region components of the RC shear walls, bulky reinforcement can lead to difficulties in concrete pouring and cause concrete segregation. Accordingly, this study concentrates on the numerical investigation of composite shear wall behavior created using cold-formed steel sheet (CFSS) elements under cyclic loading. Three composite shear wall test specimens, having L-shaped CFSSs utilized in the shear wall end regions, were modeled on a 1/3 scale with ABAQUS finite element analysis software. The specimens’ crack propagation behavior was investigated at each loading stage in the numerical analyses and validated with experiments. Furthermore, the lateral force-top displacement relationship was used to assess the wall’s behaviors. According to the results, the modeling approach accurately simulates the composite shear wall’s behavior. Finally, a parametric analysis was performed with the verified numerical simulations to examine the effect of the CFSS elements’ material properties on the composite shear walls. The parametric studies revealed that the steel sheets’ yield strength and position from the neutral axis affected the shear walls’ lateral load-bearing capacity.</div></div>\",\"PeriodicalId\":48609,\"journal\":{\"name\":\"Engineering Science and Technology-An International Journal-Jestech\",\"volume\":\"59 \",\"pages\":\"Article 101884\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering Science and Technology-An International Journal-Jestech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2215098624002702\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering Science and Technology-An International Journal-Jestech","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2215098624002702","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Experimentally validated numerical investigation on the behavior of composite shear walls subjected to cyclic loading
Due to design considerations, reinforced concrete (RC) shear walls, with narrow cross-sections containing excessive steel reinforcing bars, are commonly used in tall buildings for seismic resistance to produce functional floor plans. However, as is particularly evident in the end region components of the RC shear walls, bulky reinforcement can lead to difficulties in concrete pouring and cause concrete segregation. Accordingly, this study concentrates on the numerical investigation of composite shear wall behavior created using cold-formed steel sheet (CFSS) elements under cyclic loading. Three composite shear wall test specimens, having L-shaped CFSSs utilized in the shear wall end regions, were modeled on a 1/3 scale with ABAQUS finite element analysis software. The specimens’ crack propagation behavior was investigated at each loading stage in the numerical analyses and validated with experiments. Furthermore, the lateral force-top displacement relationship was used to assess the wall’s behaviors. According to the results, the modeling approach accurately simulates the composite shear wall’s behavior. Finally, a parametric analysis was performed with the verified numerical simulations to examine the effect of the CFSS elements’ material properties on the composite shear walls. The parametric studies revealed that the steel sheets’ yield strength and position from the neutral axis affected the shear walls’ lateral load-bearing capacity.
期刊介绍:
Engineering Science and Technology, an International Journal (JESTECH) (formerly Technology), a peer-reviewed quarterly engineering journal, publishes both theoretical and experimental high quality papers of permanent interest, not previously published in journals, in the field of engineering and applied science which aims to promote the theory and practice of technology and engineering. In addition to peer-reviewed original research papers, the Editorial Board welcomes original research reports, state-of-the-art reviews and communications in the broadly defined field of engineering science and technology.
The scope of JESTECH includes a wide spectrum of subjects including:
-Electrical/Electronics and Computer Engineering (Biomedical Engineering and Instrumentation; Coding, Cryptography, and Information Protection; Communications, Networks, Mobile Computing and Distributed Systems; Compilers and Operating Systems; Computer Architecture, Parallel Processing, and Dependability; Computer Vision and Robotics; Control Theory; Electromagnetic Waves, Microwave Techniques and Antennas; Embedded Systems; Integrated Circuits, VLSI Design, Testing, and CAD; Microelectromechanical Systems; Microelectronics, and Electronic Devices and Circuits; Power, Energy and Energy Conversion Systems; Signal, Image, and Speech Processing)
-Mechanical and Civil Engineering (Automotive Technologies; Biomechanics; Construction Materials; Design and Manufacturing; Dynamics and Control; Energy Generation, Utilization, Conversion, and Storage; Fluid Mechanics and Hydraulics; Heat and Mass Transfer; Micro-Nano Sciences; Renewable and Sustainable Energy Technologies; Robotics and Mechatronics; Solid Mechanics and Structure; Thermal Sciences)
-Metallurgical and Materials Engineering (Advanced Materials Science; Biomaterials; Ceramic and Inorgnanic Materials; Electronic-Magnetic Materials; Energy and Environment; Materials Characterizastion; Metallurgy; Polymers and Nanocomposites)