平面内对称线性约束框架的刚度

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Anthony Nixon, Bernd Schulze, Joseph Wall
{"title":"平面内对称线性约束框架的刚度","authors":"Anthony Nixon,&nbsp;Bernd Schulze,&nbsp;Joseph Wall","doi":"10.1016/j.dam.2024.10.024","DOIUrl":null,"url":null,"abstract":"<div><div>A bar-joint framework <span><math><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></math></span> is the combination of a finite simple graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> and a placement <span><math><mrow><mi>p</mi><mo>:</mo><mi>V</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span>. The framework is rigid if the only edge-length preserving continuous motions of the vertices arise from isometries of the space. Motivated by applications where boundary conditions play a significant role, one may generalise and consider linearly constrained frameworks where some vertices are constrained to move on fixed affine subspaces. Streinu and Theran characterised exactly which linearly constrained frameworks are generically rigid in 2-dimensional space. In this article we extend their characterisation to symmetric frameworks. In particular necessary combinatorial conditions are given for a symmetric linearly constrained framework in the plane to be isostatic (i.e. minimally infinitesimally rigid) under any finite point group symmetry. In the case of rotation symmetry groups whose order is either 2 or odd, these conditions are then shown to be sufficient under suitable genericity assumptions, giving precise combinatorial descriptions of symmetric isostatic graphs in these contexts.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 370-388"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rigidity of symmetric linearly constrained frameworks in the plane\",\"authors\":\"Anthony Nixon,&nbsp;Bernd Schulze,&nbsp;Joseph Wall\",\"doi\":\"10.1016/j.dam.2024.10.024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A bar-joint framework <span><math><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></math></span> is the combination of a finite simple graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> and a placement <span><math><mrow><mi>p</mi><mo>:</mo><mi>V</mi><mo>→</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></mrow></math></span>. The framework is rigid if the only edge-length preserving continuous motions of the vertices arise from isometries of the space. Motivated by applications where boundary conditions play a significant role, one may generalise and consider linearly constrained frameworks where some vertices are constrained to move on fixed affine subspaces. Streinu and Theran characterised exactly which linearly constrained frameworks are generically rigid in 2-dimensional space. In this article we extend their characterisation to symmetric frameworks. In particular necessary combinatorial conditions are given for a symmetric linearly constrained framework in the plane to be isostatic (i.e. minimally infinitesimally rigid) under any finite point group symmetry. In the case of rotation symmetry groups whose order is either 2 or odd, these conditions are then shown to be sufficient under suitable genericity assumptions, giving precise combinatorial descriptions of symmetric isostatic graphs in these contexts.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"361 \",\"pages\":\"Pages 370-388\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X2400458X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2400458X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

条形连接框架(G,p)是有限简单图 G=(V,E)与位置 p:V→Rd 的组合。如果顶点的唯一保持边长的连续运动来自于空间的等距,那么这个框架就是刚性的。在边界条件起重要作用的应用中,我们可以推广并考虑线性约束框架,其中一些顶点受限于在固定的仿射子空间上移动。Streinu 和 Theran 准确地描述了哪些线性约束框架在二维空间中是一般刚性的。在本文中,我们将他们的描述扩展到对称框架。特别是给出了在平面上的对称线性约束框架在任何有限点群对称下等静态(即最小无限刚度)的必要组合条件。在阶数为 2 或奇数的旋转对称群的情况下,这些条件在适当的通性假设下被证明是充分的,从而给出了在这些情况下对称等静止图形的精确组合描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Rigidity of symmetric linearly constrained frameworks in the plane
A bar-joint framework (G,p) is the combination of a finite simple graph G=(V,E) and a placement p:VRd. The framework is rigid if the only edge-length preserving continuous motions of the vertices arise from isometries of the space. Motivated by applications where boundary conditions play a significant role, one may generalise and consider linearly constrained frameworks where some vertices are constrained to move on fixed affine subspaces. Streinu and Theran characterised exactly which linearly constrained frameworks are generically rigid in 2-dimensional space. In this article we extend their characterisation to symmetric frameworks. In particular necessary combinatorial conditions are given for a symmetric linearly constrained framework in the plane to be isostatic (i.e. minimally infinitesimally rigid) under any finite point group symmetry. In the case of rotation symmetry groups whose order is either 2 or odd, these conditions are then shown to be sufficient under suitable genericity assumptions, giving precise combinatorial descriptions of symmetric isostatic graphs in these contexts.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信