无相交 4 循环平面图的邻域和区分总可选性

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Yuan-yuan Duan, Liang-ji Sun, Wen-yao Song
{"title":"无相交 4 循环平面图的邻域和区分总可选性","authors":"Yuan-yuan Duan,&nbsp;Liang-ji Sun,&nbsp;Wen-yao Song","doi":"10.1016/j.dam.2024.11.005","DOIUrl":null,"url":null,"abstract":"<div><div>Given a simple graph <span><math><mi>G</mi></math></span>, a proper total-<span><math><mi>k</mi></math></span>-coloring <span><math><mrow><mi>c</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∪</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>\n <span><math><mrow><mo>→</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> is called neighbor sum distinguishing if <span><math><mrow><msub><mrow><mo>∑</mo></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≠</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> for any two adjacent vertices <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mo>∑</mo></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> denote the sum of the color of <span><math><mi>v</mi></math></span> and the colors of edges incident with <span><math><mi>v</mi></math></span>. The least number <span><math><mi>k</mi></math></span> needed for such a coloring of <span><math><mi>G</mi></math></span> is the neighbor sum distinguishing total chromatic number, denoted by <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>Σ</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Pilśniak and Woźniak conjected that <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>Σ</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>3</mn></mrow></math></span> for any simple graph <span><math><mi>G</mi></math></span>. Let <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∪</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> be a set of lists of real numbers and each of size <span><math><mi>k</mi></math></span>. The least number <span><math><mi>k</mi></math></span> for which for any specified collection of such lists, there exists a neighbor sum distinguish total coloring of <span><math><mi>G</mi></math></span> with colors from <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span> for each <span><math><mrow><mi>x</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∪</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is called the neighbor sum distinguishing total choosability of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>c</mi><msubsup><mrow><mi>h</mi></mrow><mrow><mi>Σ</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, it is proved that <span><math><mrow><mi>c</mi><msubsup><mrow><mi>h</mi></mrow><mrow><mi>Σ</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mo>max</mo><mrow><mo>{</mo><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>3</mn><mo>,</mo><mn>10</mn><mo>}</mo></mrow></mrow></math></span> for any planar graph <span><math><mi>G</mi></math></span> without intersecting 4-cycles.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 473-479"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neighbor sum distinguishing total choosability of planar graphs without intersecting 4-cycles\",\"authors\":\"Yuan-yuan Duan,&nbsp;Liang-ji Sun,&nbsp;Wen-yao Song\",\"doi\":\"10.1016/j.dam.2024.11.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Given a simple graph <span><math><mi>G</mi></math></span>, a proper total-<span><math><mi>k</mi></math></span>-coloring <span><math><mrow><mi>c</mi><mo>:</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∪</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>\\n <span><math><mrow><mo>→</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> is called neighbor sum distinguishing if <span><math><mrow><msub><mrow><mo>∑</mo></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>≠</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> for any two adjacent vertices <span><math><mrow><mi>u</mi><mo>,</mo><mi>v</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mo>∑</mo></mrow><mrow><mi>c</mi></mrow></msub><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> denote the sum of the color of <span><math><mi>v</mi></math></span> and the colors of edges incident with <span><math><mi>v</mi></math></span>. The least number <span><math><mi>k</mi></math></span> needed for such a coloring of <span><math><mi>G</mi></math></span> is the neighbor sum distinguishing total chromatic number, denoted by <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>Σ</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Pilśniak and Woźniak conjected that <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>Σ</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>3</mn></mrow></math></span> for any simple graph <span><math><mi>G</mi></math></span>. Let <span><math><mrow><msub><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow></msub><mrow><mo>(</mo><mi>x</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∪</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow></math></span> be a set of lists of real numbers and each of size <span><math><mi>k</mi></math></span>. The least number <span><math><mi>k</mi></math></span> for which for any specified collection of such lists, there exists a neighbor sum distinguish total coloring of <span><math><mi>G</mi></math></span> with colors from <span><math><msub><mrow><mi>L</mi></mrow><mrow><mi>x</mi></mrow></msub></math></span> for each <span><math><mrow><mi>x</mi><mo>∈</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∪</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is called the neighbor sum distinguishing total choosability of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>c</mi><msubsup><mrow><mi>h</mi></mrow><mrow><mi>Σ</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, it is proved that <span><math><mrow><mi>c</mi><msubsup><mrow><mi>h</mi></mrow><mrow><mi>Σ</mi></mrow><mrow><mo>′</mo><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mo>max</mo><mrow><mo>{</mo><mi>Δ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mn>3</mn><mo>,</mo><mn>10</mn><mo>}</mo></mrow></mrow></math></span> for any planar graph <span><math><mi>G</mi></math></span> without intersecting 4-cycles.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"361 \",\"pages\":\"Pages 473-479\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24004761\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004761","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

给定一个简单图 G,对于任意两个相邻顶点 u,v∈V(G),如果∑c(u)≠∑c(v),则适当的总 k 着色 c:V(G)∪E(G) →{1,2,...,k} 称为邻和区分,其中∑c(v) 表示 v 的颜色与 v 所带边的颜色之和。对 G 进行着色所需的最小数 k 是邻域和区分总色度数,用 χΣ′′(G) 表示。让 Lx(x∈V(G)∪E(G))是一组实数列表,每个列表的大小为 k。对于任意指定的此类列表集合,存在对每个 x∈V(G)∪E(G)用来自 Lx 的颜色对 G 进行邻域和区分总着色的最小数 k,称为 G 的邻域和区分总可选性,用 chΣ′′(G) 表示。本文证明,对于任何没有相交 4 循环的平面图 G,chΣ′′(G)≤max{Δ(G)+3,10}。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Neighbor sum distinguishing total choosability of planar graphs without intersecting 4-cycles
Given a simple graph G, a proper total-k-coloring c:V(G)E(G) {1,2,,k} is called neighbor sum distinguishing if c(u)c(v) for any two adjacent vertices u,vV(G), where c(v) denote the sum of the color of v and the colors of edges incident with v. The least number k needed for such a coloring of G is the neighbor sum distinguishing total chromatic number, denoted by χΣ(G). Pilśniak and Woźniak conjected that χΣ(G)Δ(G)+3 for any simple graph G. Let Lx(xV(G)E(G)) be a set of lists of real numbers and each of size k. The least number k for which for any specified collection of such lists, there exists a neighbor sum distinguish total coloring of G with colors from Lx for each xV(G)E(G) is called the neighbor sum distinguishing total choosability of G, denoted by chΣ(G). In this paper, it is proved that chΣ(G)max{Δ(G)+3,10} for any planar graph G without intersecting 4-cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信