{"title":"关于给定阶数和解离数的图形的最小谱半径","authors":"Jing Zhao , Huiqing Liu , Jin Xiong","doi":"10.1016/j.dam.2024.11.014","DOIUrl":null,"url":null,"abstract":"<div><div>A dissociation set in a graph <span><math><mi>G</mi></math></span> is a set of vertices that induces a subgraph of maximum degree at most 1. The cardinality of a maximum dissociation set in <span><math><mi>G</mi></math></span> is called the dissociation number of <span><math><mi>G</mi></math></span>. Huang et al. determined the graphs with the minimum spectral radius among all connected graphs with given order <span><math><mi>n</mi></math></span> and dissociation number <span><math><mrow><mn>2</mn><mo>,</mo><mrow><mo>⌈</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>, respectively. In this paper, we characterize the graphs that attain the minimum spectral radius among all connected graphs with given order <span><math><mi>n</mi></math></span> and dissociation number <span><math><mrow><mrow><mo>⌈</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 487-501"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the minimum spectral radius of graphs with given order and dissociation number\",\"authors\":\"Jing Zhao , Huiqing Liu , Jin Xiong\",\"doi\":\"10.1016/j.dam.2024.11.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A dissociation set in a graph <span><math><mi>G</mi></math></span> is a set of vertices that induces a subgraph of maximum degree at most 1. The cardinality of a maximum dissociation set in <span><math><mi>G</mi></math></span> is called the dissociation number of <span><math><mi>G</mi></math></span>. Huang et al. determined the graphs with the minimum spectral radius among all connected graphs with given order <span><math><mi>n</mi></math></span> and dissociation number <span><math><mrow><mn>2</mn><mo>,</mo><mrow><mo>⌈</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>,</mo><mi>n</mi><mo>−</mo><mn>2</mn><mo>,</mo><mi>n</mi><mo>−</mo><mn>1</mn></mrow></math></span>, respectively. In this paper, we characterize the graphs that attain the minimum spectral radius among all connected graphs with given order <span><math><mi>n</mi></math></span> and dissociation number <span><math><mrow><mrow><mo>⌈</mo><mfrac><mrow><mn>2</mn><mi>n</mi></mrow><mrow><mn>3</mn></mrow></mfrac><mo>⌉</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span>.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"361 \",\"pages\":\"Pages 487-501\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X24004840\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X24004840","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
摘要
图 G 中的解离集是引起最大阶数至多为 1 的子图的顶点集合。在本文中,我们将描述在给定阶数 n 和解离数⌈2n3⌉-1 的所有连通图中达到最小谱半径的图的特征。
On the minimum spectral radius of graphs with given order and dissociation number
A dissociation set in a graph is a set of vertices that induces a subgraph of maximum degree at most 1. The cardinality of a maximum dissociation set in is called the dissociation number of . Huang et al. determined the graphs with the minimum spectral radius among all connected graphs with given order and dissociation number , respectively. In this paper, we characterize the graphs that attain the minimum spectral radius among all connected graphs with given order and dissociation number .
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.