无相交三角形/四边形的图形的 α 指数为次要指数

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Yanting Zhang, Ligong Wang
{"title":"无相交三角形/四边形的图形的 α 指数为次要指数","authors":"Yanting Zhang,&nbsp;Ligong Wang","doi":"10.1016/j.dam.2024.10.027","DOIUrl":null,"url":null,"abstract":"<div><div>The <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-matrix of a graph <span><math><mi>G</mi></math></span> is the convex linear combination of the adjacency matrix <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and the diagonal matrix of vertex degrees <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, i.e., <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mn>0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></math></span>. The <span><math><mi>α</mi></math></span>-index of <span><math><mi>G</mi></math></span> is the largest eigenvalue of <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, we characterize the extremal graphs with the maximum <span><math><mi>α</mi></math></span>-index among all graphs of sufficiently large order without intersecting triangles and quadrangles as a minor for any <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>, respectively. As by-products, we determine the extremal graphs with the maximum signless Laplacian spectral radius over all graphs of sufficiently large order without intersecting triangles and quadrangles as a minor, respectively.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"361 ","pages":"Pages 324-335"},"PeriodicalIF":1.0000,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The α-index of graphs without intersecting triangles/quadrangles as a minor\",\"authors\":\"Yanting Zhang,&nbsp;Ligong Wang\",\"doi\":\"10.1016/j.dam.2024.10.027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span>-matrix of a graph <span><math><mi>G</mi></math></span> is the convex linear combination of the adjacency matrix <span><math><mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and the diagonal matrix of vertex degrees <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, i.e., <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><mi>α</mi><mi>D</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>−</mo><mi>α</mi><mo>)</mo></mrow><mi>A</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, where <span><math><mrow><mn>0</mn><mo>≤</mo><mi>α</mi><mo>≤</mo><mn>1</mn></mrow></math></span>. The <span><math><mi>α</mi></math></span>-index of <span><math><mi>G</mi></math></span> is the largest eigenvalue of <span><math><mrow><msub><mrow><mi>A</mi></mrow><mrow><mi>α</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. In this paper, we characterize the extremal graphs with the maximum <span><math><mi>α</mi></math></span>-index among all graphs of sufficiently large order without intersecting triangles and quadrangles as a minor for any <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>, respectively. As by-products, we determine the extremal graphs with the maximum signless Laplacian spectral radius over all graphs of sufficiently large order without intersecting triangles and quadrangles as a minor, respectively.</div></div>\",\"PeriodicalId\":50573,\"journal\":{\"name\":\"Discrete Applied Mathematics\",\"volume\":\"361 \",\"pages\":\"Pages 324-335\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-11-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Discrete Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166218X2400461X\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X2400461X","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

图 G 的 Aα 矩阵是邻接矩阵 A(G) 和顶点度对角矩阵 D(G) 的凸线性组合,即 Aα(G)=αD(G)+(1-α)A(G),其中 0≤α≤1.G 的 α 指数是 Aα(G) 的最大特征值。在本文中,我们描述了在任意 0<α<1 的情况下,在所有阶数足够大且不相交三角形和四边形的图形中,具有最大 α-index 的极值图形。作为副产品,我们分别确定了在所有阶数足够大且不以三角形和四边形相交为次要特征的图形中具有最大无符号拉普拉斯谱半径的极值图形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The α-index of graphs without intersecting triangles/quadrangles as a minor
The Aα-matrix of a graph G is the convex linear combination of the adjacency matrix A(G) and the diagonal matrix of vertex degrees D(G), i.e., Aα(G)=αD(G)+(1α)A(G), where 0α1. The α-index of G is the largest eigenvalue of Aα(G). In this paper, we characterize the extremal graphs with the maximum α-index among all graphs of sufficiently large order without intersecting triangles and quadrangles as a minor for any 0<α<1, respectively. As by-products, we determine the extremal graphs with the maximum signless Laplacian spectral radius over all graphs of sufficiently large order without intersecting triangles and quadrangles as a minor, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信