原胰岛素 C 肽是人类胰岛浸润 CD4+ T 细胞识别的 HLA-DQ8 限制性混合胰岛素肽的主要来源。

IF 2.2 Q2 MULTIDISCIPLINARY SCIENCES
Pushpak Bhattacharjee, Miha Pakusch, Matthew Lacorcia, Eleonora Tresoldi, Alan F Rubin, Abby Foster, Laura King, Chris Y Chiu, Thomas W H Kay, John A Karas, Fergus J Cameron, Stuart I Mannering
{"title":"原胰岛素 C 肽是人类胰岛浸润 CD4+ T 细胞识别的 HLA-DQ8 限制性混合胰岛素肽的主要来源。","authors":"Pushpak Bhattacharjee, Miha Pakusch, Matthew Lacorcia, Eleonora Tresoldi, Alan F Rubin, Abby Foster, Laura King, Chris Y Chiu, Thomas W H Kay, John A Karas, Fergus J Cameron, Stuart I Mannering","doi":"10.1093/pnasnexus/pgae491","DOIUrl":null,"url":null,"abstract":"<p><p>Type 1 diabetes (T1D) is an autoimmune disease that develops when T cells destroy the insulin-producing beta cells that reside in the pancreatic islets. Immune cells, including T cells, infiltrate the islets and gradually destroy the beta cells. Human islet-infiltrating CD4<sup>+</sup> T cells recognize peptide epitopes derived from proinsulin, particularly C-peptide. Hybrid insulin peptides (HIPs) are neoepitopes formed by the fusion of two peptides derived from beta cell granule proteins and are known to be the targets of pathogenic CD4<sup>+</sup> T cells in the non-obese diabetic (NOD) mouse and human islet-infiltrating CD4<sup>+</sup> T cells. Proinsulin is widely recognized as a central antigen in T1D, but its role in forming HIPs is unclear. We developed a method to functionally screen TCRs derived from human islet-infiltrating CD4<sup>+</sup> T cells and applied this to the identification of new proinsulin-derived HIPs. We generated a library of 4,488 candidate HIPs formed by fusion of proinsulin fragments and predicted to bind to HLA-DQ8. This library was screened against 109 islet-infiltrating CD4<sup>+</sup> T cell receptors (TCRs) isolated from four organ donors who had T1D. We identified 13 unique HIPs recognized by nine different TCRs from two organ donors. HIP-specific T cell avatars responded specifically to a peptide extract from human islets. These new HIPs predominantly stimulated CD4<sup>+</sup> T cell proliferation in peripheral blood mononuclear cells from individuals with T1D in contrast to HLA-matched controls. This is the first unbiased functional, islet-infiltrating T cell based, screen to identify proinsulin-derived HIPs. It has revealed many new HIPs and a central role of proinsulin C-peptide in their formation.</p>","PeriodicalId":74468,"journal":{"name":"PNAS nexus","volume":"3 11","pages":"pgae491"},"PeriodicalIF":2.2000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565411/pdf/","citationCount":"0","resultStr":"{\"title\":\"Proinsulin C-peptide is a major source of HLA-DQ8 restricted hybrid insulin peptides recognized by human islet-infiltrating CD4<sup>+</sup> T cells.\",\"authors\":\"Pushpak Bhattacharjee, Miha Pakusch, Matthew Lacorcia, Eleonora Tresoldi, Alan F Rubin, Abby Foster, Laura King, Chris Y Chiu, Thomas W H Kay, John A Karas, Fergus J Cameron, Stuart I Mannering\",\"doi\":\"10.1093/pnasnexus/pgae491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Type 1 diabetes (T1D) is an autoimmune disease that develops when T cells destroy the insulin-producing beta cells that reside in the pancreatic islets. Immune cells, including T cells, infiltrate the islets and gradually destroy the beta cells. Human islet-infiltrating CD4<sup>+</sup> T cells recognize peptide epitopes derived from proinsulin, particularly C-peptide. Hybrid insulin peptides (HIPs) are neoepitopes formed by the fusion of two peptides derived from beta cell granule proteins and are known to be the targets of pathogenic CD4<sup>+</sup> T cells in the non-obese diabetic (NOD) mouse and human islet-infiltrating CD4<sup>+</sup> T cells. Proinsulin is widely recognized as a central antigen in T1D, but its role in forming HIPs is unclear. We developed a method to functionally screen TCRs derived from human islet-infiltrating CD4<sup>+</sup> T cells and applied this to the identification of new proinsulin-derived HIPs. We generated a library of 4,488 candidate HIPs formed by fusion of proinsulin fragments and predicted to bind to HLA-DQ8. This library was screened against 109 islet-infiltrating CD4<sup>+</sup> T cell receptors (TCRs) isolated from four organ donors who had T1D. We identified 13 unique HIPs recognized by nine different TCRs from two organ donors. HIP-specific T cell avatars responded specifically to a peptide extract from human islets. These new HIPs predominantly stimulated CD4<sup>+</sup> T cell proliferation in peripheral blood mononuclear cells from individuals with T1D in contrast to HLA-matched controls. This is the first unbiased functional, islet-infiltrating T cell based, screen to identify proinsulin-derived HIPs. It has revealed many new HIPs and a central role of proinsulin C-peptide in their formation.</p>\",\"PeriodicalId\":74468,\"journal\":{\"name\":\"PNAS nexus\",\"volume\":\"3 11\",\"pages\":\"pgae491\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11565411/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"PNAS nexus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/pnasnexus/pgae491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"PNAS nexus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/pnasnexus/pgae491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

1 型糖尿病(T1D)是一种自身免疫性疾病,当 T 细胞破坏胰岛中产生胰岛素的 beta 细胞时就会发病。包括 T 细胞在内的免疫细胞渗入胰岛并逐渐破坏β细胞。人体胰岛浸润的 CD4+ T 细胞能识别源自胰岛素原的肽表位,尤其是 C 肽。混合胰岛素肽(HIPs)是由源自β细胞颗粒蛋白的两种肽融合形成的新表位,已知是非肥胖糖尿病(NOD)小鼠和人类胰岛浸润 CD4+ T 细胞致病性 CD4+ T 细胞的靶标。原胰岛素被公认为是 T1D 的核心抗原,但它在形成 HIPs 中的作用尚不清楚。我们开发了一种方法来功能性筛选来自人小岛浸润 CD4+ T 细胞的 TCR,并将其应用于鉴定新的胰岛素衍生 HIP。我们生成了一个由 4,488 个候选 HIPs 组成的文库,这些 HIPs 由原胰岛素片段融合而成,预计能与 HLA-DQ8 结合。我们针对从四位患有 T1D 的器官捐献者身上分离出的 109 个小岛浸润型 CD4+ T 细胞受体(TCR)筛选了该文库。我们从两名器官捐献者的九种不同的 TCRs 识别出了 13 种独特的 HIP。HIP特异性 T 细胞化身对人类胰岛的肽提取物有特异性反应。与 HLA 匹配的对照组相比,这些新的 HIPs 主要刺激 T1D 患者外周血单核细胞中 CD4+ T 细胞的增殖。这是首次基于胰岛浸润 T 细胞的无偏见功能性筛选,以确定胰岛素衍生 HIPs。它揭示了许多新的 HIPs 以及胰岛素 C 肽在其形成过程中的核心作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Proinsulin C-peptide is a major source of HLA-DQ8 restricted hybrid insulin peptides recognized by human islet-infiltrating CD4+ T cells.

Type 1 diabetes (T1D) is an autoimmune disease that develops when T cells destroy the insulin-producing beta cells that reside in the pancreatic islets. Immune cells, including T cells, infiltrate the islets and gradually destroy the beta cells. Human islet-infiltrating CD4+ T cells recognize peptide epitopes derived from proinsulin, particularly C-peptide. Hybrid insulin peptides (HIPs) are neoepitopes formed by the fusion of two peptides derived from beta cell granule proteins and are known to be the targets of pathogenic CD4+ T cells in the non-obese diabetic (NOD) mouse and human islet-infiltrating CD4+ T cells. Proinsulin is widely recognized as a central antigen in T1D, but its role in forming HIPs is unclear. We developed a method to functionally screen TCRs derived from human islet-infiltrating CD4+ T cells and applied this to the identification of new proinsulin-derived HIPs. We generated a library of 4,488 candidate HIPs formed by fusion of proinsulin fragments and predicted to bind to HLA-DQ8. This library was screened against 109 islet-infiltrating CD4+ T cell receptors (TCRs) isolated from four organ donors who had T1D. We identified 13 unique HIPs recognized by nine different TCRs from two organ donors. HIP-specific T cell avatars responded specifically to a peptide extract from human islets. These new HIPs predominantly stimulated CD4+ T cell proliferation in peripheral blood mononuclear cells from individuals with T1D in contrast to HLA-matched controls. This is the first unbiased functional, islet-infiltrating T cell based, screen to identify proinsulin-derived HIPs. It has revealed many new HIPs and a central role of proinsulin C-peptide in their formation.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信