围绕多项式知识结构和多项式函数的可判别性。

IF 1.5 3区 心理学 Q3 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
Xun Ge
{"title":"围绕多项式知识结构和多项式函数的可判别性。","authors":"Xun Ge","doi":"10.1111/bmsp.12370","DOIUrl":null,"url":null,"abstract":"<p><p>The discriminability in polytomous KST was introduced by Stefanutti et al. (Journal of Mathematical Psychology, 2020, 94, 102306). As the interesting topic in polytomous KST, this paper discusses the discriminability around granular polytomous knowledge spaces, polytomous knowledge structures, polytomous surmising functions and polytomous skill functions. More precisely, this paper gives some equivalences between the discriminability of polytomous surmising functions (resp. polytomous skill functions) and the discriminability of granular polytomous knowledge spaces (resp. polytomous knowledge structures). Such findings open the field to a systematic generalization of the discriminability in KST to the polytomous case.</p>","PeriodicalId":55322,"journal":{"name":"British Journal of Mathematical & Statistical Psychology","volume":" ","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Discriminability around polytomous knowledge structures and polytomous functions.\",\"authors\":\"Xun Ge\",\"doi\":\"10.1111/bmsp.12370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The discriminability in polytomous KST was introduced by Stefanutti et al. (Journal of Mathematical Psychology, 2020, 94, 102306). As the interesting topic in polytomous KST, this paper discusses the discriminability around granular polytomous knowledge spaces, polytomous knowledge structures, polytomous surmising functions and polytomous skill functions. More precisely, this paper gives some equivalences between the discriminability of polytomous surmising functions (resp. polytomous skill functions) and the discriminability of granular polytomous knowledge spaces (resp. polytomous knowledge structures). Such findings open the field to a systematic generalization of the discriminability in KST to the polytomous case.</p>\",\"PeriodicalId\":55322,\"journal\":{\"name\":\"British Journal of Mathematical & Statistical Psychology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"British Journal of Mathematical & Statistical Psychology\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://doi.org/10.1111/bmsp.12370\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"British Journal of Mathematical & Statistical Psychology","FirstCategoryId":"102","ListUrlMain":"https://doi.org/10.1111/bmsp.12370","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

Stefanutti 等(《数学心理学杂志》,2020 年,94 期,102306)介绍了多域知识空间的可辨别性。作为多表征 KST 的有趣话题,本文讨论了围绕粒度多表征知识空间、多表征知识结构、多表征臆测函数和多表征技能函数的可判别性。更确切地说,本文给出了多项式臆测函数(或多项式技能函数)的可判别性与粒状多项式知识空间(或多项式知识结构)的可判别性之间的一些等价关系。这些发现开辟了将 KST 中的可辨别性系统地推广到多矩情况的领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Discriminability around polytomous knowledge structures and polytomous functions.

The discriminability in polytomous KST was introduced by Stefanutti et al. (Journal of Mathematical Psychology, 2020, 94, 102306). As the interesting topic in polytomous KST, this paper discusses the discriminability around granular polytomous knowledge spaces, polytomous knowledge structures, polytomous surmising functions and polytomous skill functions. More precisely, this paper gives some equivalences between the discriminability of polytomous surmising functions (resp. polytomous skill functions) and the discriminability of granular polytomous knowledge spaces (resp. polytomous knowledge structures). Such findings open the field to a systematic generalization of the discriminability in KST to the polytomous case.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
5.00
自引率
3.80%
发文量
34
审稿时长
>12 weeks
期刊介绍: The British Journal of Mathematical and Statistical Psychology publishes articles relating to areas of psychology which have a greater mathematical or statistical aspect of their argument than is usually acceptable to other journals including: • mathematical psychology • statistics • psychometrics • decision making • psychophysics • classification • relevant areas of mathematics, computing and computer software These include articles that address substantitive psychological issues or that develop and extend techniques useful to psychologists. New models for psychological processes, new approaches to existing data, critiques of existing models and improved algorithms for estimating the parameters of a model are examples of articles which may be favoured.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信