Chao Li , Shaokang Dong , Shangdong Yang , Yujing Hu , Wenbin Li , Yang Gao
{"title":"通过双重协作约束协调多代理强化学习","authors":"Chao Li , Shaokang Dong , Shangdong Yang , Yujing Hu , Wenbin Li , Yang Gao","doi":"10.1016/j.neunet.2024.106858","DOIUrl":null,"url":null,"abstract":"<div><div>Many real-world multi-agent tasks exhibit a nearly decomposable structure, where interactions among agents within the same interaction set are strong while interactions between different sets are relatively weak. Efficiently modeling the nearly decomposable structure and leveraging it to coordinate agents can enhance the learning efficiency of multi-agent reinforcement learning algorithms for cooperative tasks, while existing works typically fail. To overcome this limitation, this paper proposes a novel algorithm named Dual Collaborative Constraints (DCC) that identifies the interaction sets as subtasks and achieves both intra-subtask and inter-subtask coordination. Specifically, DCC employs a bi-level structure to periodically distribute agents into multiple subtasks, and proposes both local and global collaborative constraints based on mutual information to facilitate both intra-subtask and inter-subtask coordination among agents. These two constraints ensure that agents within the same subtask reach a consensus on their local action selections and all of them select superior joint actions that maximize the overall task performance. Experimentally, we evaluate DCC on various cooperative multi-agent tasks, and its superior performance against multiple state-of-the-art baselines demonstrates its effectiveness.</div></div>","PeriodicalId":49763,"journal":{"name":"Neural Networks","volume":"182 ","pages":"Article 106858"},"PeriodicalIF":6.0000,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coordinating Multi-Agent Reinforcement Learning via Dual Collaborative Constraints\",\"authors\":\"Chao Li , Shaokang Dong , Shangdong Yang , Yujing Hu , Wenbin Li , Yang Gao\",\"doi\":\"10.1016/j.neunet.2024.106858\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Many real-world multi-agent tasks exhibit a nearly decomposable structure, where interactions among agents within the same interaction set are strong while interactions between different sets are relatively weak. Efficiently modeling the nearly decomposable structure and leveraging it to coordinate agents can enhance the learning efficiency of multi-agent reinforcement learning algorithms for cooperative tasks, while existing works typically fail. To overcome this limitation, this paper proposes a novel algorithm named Dual Collaborative Constraints (DCC) that identifies the interaction sets as subtasks and achieves both intra-subtask and inter-subtask coordination. Specifically, DCC employs a bi-level structure to periodically distribute agents into multiple subtasks, and proposes both local and global collaborative constraints based on mutual information to facilitate both intra-subtask and inter-subtask coordination among agents. These two constraints ensure that agents within the same subtask reach a consensus on their local action selections and all of them select superior joint actions that maximize the overall task performance. Experimentally, we evaluate DCC on various cooperative multi-agent tasks, and its superior performance against multiple state-of-the-art baselines demonstrates its effectiveness.</div></div>\",\"PeriodicalId\":49763,\"journal\":{\"name\":\"Neural Networks\",\"volume\":\"182 \",\"pages\":\"Article 106858\"},\"PeriodicalIF\":6.0000,\"publicationDate\":\"2024-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neural Networks\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0893608024007822\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neural Networks","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0893608024007822","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Coordinating Multi-Agent Reinforcement Learning via Dual Collaborative Constraints
Many real-world multi-agent tasks exhibit a nearly decomposable structure, where interactions among agents within the same interaction set are strong while interactions between different sets are relatively weak. Efficiently modeling the nearly decomposable structure and leveraging it to coordinate agents can enhance the learning efficiency of multi-agent reinforcement learning algorithms for cooperative tasks, while existing works typically fail. To overcome this limitation, this paper proposes a novel algorithm named Dual Collaborative Constraints (DCC) that identifies the interaction sets as subtasks and achieves both intra-subtask and inter-subtask coordination. Specifically, DCC employs a bi-level structure to periodically distribute agents into multiple subtasks, and proposes both local and global collaborative constraints based on mutual information to facilitate both intra-subtask and inter-subtask coordination among agents. These two constraints ensure that agents within the same subtask reach a consensus on their local action selections and all of them select superior joint actions that maximize the overall task performance. Experimentally, we evaluate DCC on various cooperative multi-agent tasks, and its superior performance against multiple state-of-the-art baselines demonstrates its effectiveness.
期刊介绍:
Neural Networks is a platform that aims to foster an international community of scholars and practitioners interested in neural networks, deep learning, and other approaches to artificial intelligence and machine learning. Our journal invites submissions covering various aspects of neural networks research, from computational neuroscience and cognitive modeling to mathematical analyses and engineering applications. By providing a forum for interdisciplinary discussions between biology and technology, we aim to encourage the development of biologically-inspired artificial intelligence.