{"title":"从视频序列预测 fMRI 图像:线性模型分析。","authors":"Daniil Dorin, Nikita Kiselev, Andrey Grabovoy, Vadim Strijov","doi":"10.1007/s13755-024-00315-5","DOIUrl":null,"url":null,"abstract":"<p><p>Over the past few decades, a variety of significant scientific breakthroughs have been achieved in the fields of brain encoding and decoding using the functional magnetic resonance imaging (fMRI). Many studies have been conducted on the topic of human brain reaction to visual stimuli. However, the relationship between fMRI images and video sequences viewed by humans remains complex and is often studied using large transformer models. In this paper, we investigate the correlation between videos presented to participants during an experiment and the resulting fMRI images. To achieve this, we propose a method for creating a linear model that predicts changes in fMRI signals based on video sequence images. A linear model is constructed for each individual voxel in the fMRI image, assuming that the image sequence follows a Markov property. Through the comprehensive qualitative experiments, we demonstrate the relationship between the two time series. We hope that our findings contribute to a deeper understanding of the human brain's reaction to external stimuli and provide a basis for future research in this area.</p>","PeriodicalId":46312,"journal":{"name":"Health Information Science and Systems","volume":"12 1","pages":"55"},"PeriodicalIF":4.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568086/pdf/","citationCount":"0","resultStr":"{\"title\":\"Forecasting fMRI images from video sequences: linear model analysis.\",\"authors\":\"Daniil Dorin, Nikita Kiselev, Andrey Grabovoy, Vadim Strijov\",\"doi\":\"10.1007/s13755-024-00315-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Over the past few decades, a variety of significant scientific breakthroughs have been achieved in the fields of brain encoding and decoding using the functional magnetic resonance imaging (fMRI). Many studies have been conducted on the topic of human brain reaction to visual stimuli. However, the relationship between fMRI images and video sequences viewed by humans remains complex and is often studied using large transformer models. In this paper, we investigate the correlation between videos presented to participants during an experiment and the resulting fMRI images. To achieve this, we propose a method for creating a linear model that predicts changes in fMRI signals based on video sequence images. A linear model is constructed for each individual voxel in the fMRI image, assuming that the image sequence follows a Markov property. Through the comprehensive qualitative experiments, we demonstrate the relationship between the two time series. We hope that our findings contribute to a deeper understanding of the human brain's reaction to external stimuli and provide a basis for future research in this area.</p>\",\"PeriodicalId\":46312,\"journal\":{\"name\":\"Health Information Science and Systems\",\"volume\":\"12 1\",\"pages\":\"55\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568086/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Health Information Science and Systems\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s13755-024-00315-5\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MEDICAL INFORMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Health Information Science and Systems","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s13755-024-00315-5","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
Forecasting fMRI images from video sequences: linear model analysis.
Over the past few decades, a variety of significant scientific breakthroughs have been achieved in the fields of brain encoding and decoding using the functional magnetic resonance imaging (fMRI). Many studies have been conducted on the topic of human brain reaction to visual stimuli. However, the relationship between fMRI images and video sequences viewed by humans remains complex and is often studied using large transformer models. In this paper, we investigate the correlation between videos presented to participants during an experiment and the resulting fMRI images. To achieve this, we propose a method for creating a linear model that predicts changes in fMRI signals based on video sequence images. A linear model is constructed for each individual voxel in the fMRI image, assuming that the image sequence follows a Markov property. Through the comprehensive qualitative experiments, we demonstrate the relationship between the two time series. We hope that our findings contribute to a deeper understanding of the human brain's reaction to external stimuli and provide a basis for future research in this area.
期刊介绍:
Health Information Science and Systems is a multidisciplinary journal that integrates artificial intelligence/computer science/information technology with health science and services, embracing information science research coupled with topics related to the modeling, design, development, integration and management of health information systems, smart health, artificial intelligence in medicine, and computer aided diagnosis, medical expert systems. The scope includes: i.) smart health, artificial Intelligence in medicine, computer aided diagnosis, medical image processing, medical expert systems ii.) medical big data, medical/health/biomedicine information resources such as patient medical records, devices and equipments, software and tools to capture, store, retrieve, process, analyze, optimize the use of information in the health domain, iii.) data management, data mining, and knowledge discovery, all of which play a key role in decision making, management of public health, examination of standards, privacy and security issues, iv.) development of new architectures and applications for health information systems.