{"title":"半乳糖-1-磷酸尿苷酰转移酶 GalT 可促进苏云金芽孢杆菌生物膜的形成并增强其抗紫外线-B 的能力。","authors":"Aisha Lawan Idris, Xiao Fan, Wen Li, Hankun Pei, Musa Hassan Muhammad, Xiong Guan, Tianpei Huang","doi":"10.1007/s11274-024-04195-5","DOIUrl":null,"url":null,"abstract":"<p><p>Ultraviolet radiation (UV) is a major abiotic stress resulting in relative short duration of Bacillus thuringiensis (Bt) biopesticides in the field, which is expected to be solved by formation of Bt biofilm with higher UV resistance. Therefore, one of the important prerequisite works is to clarify the functions of biofilm-associated genes on biofilm formation and UV resistance of Bt. In this study, comparative genomics and bioinformatic analysis indicated that BTXL6_19475 gene involved in biofilm formation of Bt XL6 was likely to encode a galactose-1-phosphate uridylyltransferase (GalT, E.C. 2.7.7.12). Heterologous expression of the BTXL6_19475 gene in Escherichia coli and detection of its GalT enzyme activity in vitro proved that the gene did encode GalT. Comparing the wild type Bt strain XL6 with galT gene knockout mutant Bt XL6ΔgalT and its complementary strain Bt XL6ΔgalT::19,475, GalT promoted the biofilm formation and enhanced the UV-B resistance of Bt XL6 likely by increasing its D-ribose production and reducing its alanine aryldamidase activity. GalT did not affect the growth and the cell motility of Bt XL6. A regulation map had been proposed to elucidate how GalT promoted biofilm formation and enhanced UV-B resistance of Bt XL6 by the cross-talk between Leloir pathway, Embden-Meyerhof glycolysis pathway and pentose phosphate pathway. Our finding provides a theoretical basis for the efficient use of biofilm genes to improve the UV resistance of Bt biofilms and thus extend field duration of Bt formulations based on biofilm engineering.</p>","PeriodicalId":23703,"journal":{"name":"World journal of microbiology & biotechnology","volume":"40 12","pages":"383"},"PeriodicalIF":4.0000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Galactose-1-phosphate uridylyltransferase GalT promotes biofilm formation and enhances UV-B resistance of Bacillus thuringiensis.\",\"authors\":\"Aisha Lawan Idris, Xiao Fan, Wen Li, Hankun Pei, Musa Hassan Muhammad, Xiong Guan, Tianpei Huang\",\"doi\":\"10.1007/s11274-024-04195-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ultraviolet radiation (UV) is a major abiotic stress resulting in relative short duration of Bacillus thuringiensis (Bt) biopesticides in the field, which is expected to be solved by formation of Bt biofilm with higher UV resistance. Therefore, one of the important prerequisite works is to clarify the functions of biofilm-associated genes on biofilm formation and UV resistance of Bt. In this study, comparative genomics and bioinformatic analysis indicated that BTXL6_19475 gene involved in biofilm formation of Bt XL6 was likely to encode a galactose-1-phosphate uridylyltransferase (GalT, E.C. 2.7.7.12). Heterologous expression of the BTXL6_19475 gene in Escherichia coli and detection of its GalT enzyme activity in vitro proved that the gene did encode GalT. Comparing the wild type Bt strain XL6 with galT gene knockout mutant Bt XL6ΔgalT and its complementary strain Bt XL6ΔgalT::19,475, GalT promoted the biofilm formation and enhanced the UV-B resistance of Bt XL6 likely by increasing its D-ribose production and reducing its alanine aryldamidase activity. GalT did not affect the growth and the cell motility of Bt XL6. A regulation map had been proposed to elucidate how GalT promoted biofilm formation and enhanced UV-B resistance of Bt XL6 by the cross-talk between Leloir pathway, Embden-Meyerhof glycolysis pathway and pentose phosphate pathway. Our finding provides a theoretical basis for the efficient use of biofilm genes to improve the UV resistance of Bt biofilms and thus extend field duration of Bt formulations based on biofilm engineering.</p>\",\"PeriodicalId\":23703,\"journal\":{\"name\":\"World journal of microbiology & biotechnology\",\"volume\":\"40 12\",\"pages\":\"383\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"World journal of microbiology & biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11274-024-04195-5\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"World journal of microbiology & biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11274-024-04195-5","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Galactose-1-phosphate uridylyltransferase GalT promotes biofilm formation and enhances UV-B resistance of Bacillus thuringiensis.
Ultraviolet radiation (UV) is a major abiotic stress resulting in relative short duration of Bacillus thuringiensis (Bt) biopesticides in the field, which is expected to be solved by formation of Bt biofilm with higher UV resistance. Therefore, one of the important prerequisite works is to clarify the functions of biofilm-associated genes on biofilm formation and UV resistance of Bt. In this study, comparative genomics and bioinformatic analysis indicated that BTXL6_19475 gene involved in biofilm formation of Bt XL6 was likely to encode a galactose-1-phosphate uridylyltransferase (GalT, E.C. 2.7.7.12). Heterologous expression of the BTXL6_19475 gene in Escherichia coli and detection of its GalT enzyme activity in vitro proved that the gene did encode GalT. Comparing the wild type Bt strain XL6 with galT gene knockout mutant Bt XL6ΔgalT and its complementary strain Bt XL6ΔgalT::19,475, GalT promoted the biofilm formation and enhanced the UV-B resistance of Bt XL6 likely by increasing its D-ribose production and reducing its alanine aryldamidase activity. GalT did not affect the growth and the cell motility of Bt XL6. A regulation map had been proposed to elucidate how GalT promoted biofilm formation and enhanced UV-B resistance of Bt XL6 by the cross-talk between Leloir pathway, Embden-Meyerhof glycolysis pathway and pentose phosphate pathway. Our finding provides a theoretical basis for the efficient use of biofilm genes to improve the UV resistance of Bt biofilms and thus extend field duration of Bt formulations based on biofilm engineering.
期刊介绍:
World Journal of Microbiology and Biotechnology publishes research papers and review articles on all aspects of Microbiology and Microbial Biotechnology.
Since its foundation, the Journal has provided a forum for research work directed toward finding microbiological and biotechnological solutions to global problems. As many of these problems, including crop productivity, public health and waste management, have major impacts in the developing world, the Journal especially reports on advances for and from developing regions.
Some topics are not within the scope of the Journal. Please do not submit your manuscript if it falls into one of the following categories:
· Virology
· Simple isolation of microbes from local sources
· Simple descriptions of an environment or reports on a procedure
· Veterinary, agricultural and clinical topics in which the main focus is not on a microorganism
· Data reporting on host response to microbes
· Optimization of a procedure
· Description of the biological effects of not fully identified compounds or undefined extracts of natural origin
· Data on not fully purified enzymes or procedures in which they are applied
All articles published in the Journal are independently refereed.