Basak Coban, Mehmet Baskurt, Hasan Sahin, Ahu Arslan-Yildiz
{"title":"开发基于海藻酸镁的自解离生物墨水,用于三维肿瘤模型的磁性生物图案。","authors":"Basak Coban, Mehmet Baskurt, Hasan Sahin, Ahu Arslan-Yildiz","doi":"10.1002/mabi.202400339","DOIUrl":null,"url":null,"abstract":"<p><p>Alginate forms a hydrogel via physical cross-linking with divalent cations. In literature, Ca<sup>2+</sup> is mostly utilized due to strong interactions but additional procedures are required to disassociate Ca-alginate hydrogels. On the other hand, Mg-alginate hydrogels disassociate spontaneously, which might benefit certain applications. This study introduces Mg-alginate as the main component of a bio-ink for the first time to obtain 3D tumor models by magnetic bio-patterning technique. The bio-ink contains magnetic nanoparticles (MNPs) for magnetic manipulation, Mg-alginate hydrogel as a sacrificial material, and cells. The applicability of the methodology is tested for the formation of 3D tumor models using HeLa, SaOS-2, and SH-SY5Y cells. Long-term cultures are examined by Live/dead and MTT analysis and revealed high cell viability. Subsequently, Collagen and F-actin expressions are observed successfully in 3D tumor models. Finally, the anti-cancer drug Doxorubicin (DOX) effect is investigated on 3D tumor models, and IC<sub>50</sub> values is calculated to assess the drug response. As a result, significantly higher drug resistance is observed for bio-patterned 3D tumor models up to tenfold compared to 2D control. Overall, Mg-alginate hydrogel is successfully used to form bio-patterned 3D tumor models, and the applicability of the model is shown effectively, especially as a drug screening platform.</p>","PeriodicalId":18103,"journal":{"name":"Macromolecular bioscience","volume":" ","pages":"e2400339"},"PeriodicalIF":4.4000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of Mg-Alginate Based Self Disassociative Bio-Ink for Magnetic Bio-Patterning of 3D Tumor Models.\",\"authors\":\"Basak Coban, Mehmet Baskurt, Hasan Sahin, Ahu Arslan-Yildiz\",\"doi\":\"10.1002/mabi.202400339\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Alginate forms a hydrogel via physical cross-linking with divalent cations. In literature, Ca<sup>2+</sup> is mostly utilized due to strong interactions but additional procedures are required to disassociate Ca-alginate hydrogels. On the other hand, Mg-alginate hydrogels disassociate spontaneously, which might benefit certain applications. This study introduces Mg-alginate as the main component of a bio-ink for the first time to obtain 3D tumor models by magnetic bio-patterning technique. The bio-ink contains magnetic nanoparticles (MNPs) for magnetic manipulation, Mg-alginate hydrogel as a sacrificial material, and cells. The applicability of the methodology is tested for the formation of 3D tumor models using HeLa, SaOS-2, and SH-SY5Y cells. Long-term cultures are examined by Live/dead and MTT analysis and revealed high cell viability. Subsequently, Collagen and F-actin expressions are observed successfully in 3D tumor models. Finally, the anti-cancer drug Doxorubicin (DOX) effect is investigated on 3D tumor models, and IC<sub>50</sub> values is calculated to assess the drug response. As a result, significantly higher drug resistance is observed for bio-patterned 3D tumor models up to tenfold compared to 2D control. Overall, Mg-alginate hydrogel is successfully used to form bio-patterned 3D tumor models, and the applicability of the model is shown effectively, especially as a drug screening platform.</p>\",\"PeriodicalId\":18103,\"journal\":{\"name\":\"Macromolecular bioscience\",\"volume\":\" \",\"pages\":\"e2400339\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular bioscience\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1002/mabi.202400339\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular bioscience","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1002/mabi.202400339","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Development of Mg-Alginate Based Self Disassociative Bio-Ink for Magnetic Bio-Patterning of 3D Tumor Models.
Alginate forms a hydrogel via physical cross-linking with divalent cations. In literature, Ca2+ is mostly utilized due to strong interactions but additional procedures are required to disassociate Ca-alginate hydrogels. On the other hand, Mg-alginate hydrogels disassociate spontaneously, which might benefit certain applications. This study introduces Mg-alginate as the main component of a bio-ink for the first time to obtain 3D tumor models by magnetic bio-patterning technique. The bio-ink contains magnetic nanoparticles (MNPs) for magnetic manipulation, Mg-alginate hydrogel as a sacrificial material, and cells. The applicability of the methodology is tested for the formation of 3D tumor models using HeLa, SaOS-2, and SH-SY5Y cells. Long-term cultures are examined by Live/dead and MTT analysis and revealed high cell viability. Subsequently, Collagen and F-actin expressions are observed successfully in 3D tumor models. Finally, the anti-cancer drug Doxorubicin (DOX) effect is investigated on 3D tumor models, and IC50 values is calculated to assess the drug response. As a result, significantly higher drug resistance is observed for bio-patterned 3D tumor models up to tenfold compared to 2D control. Overall, Mg-alginate hydrogel is successfully used to form bio-patterned 3D tumor models, and the applicability of the model is shown effectively, especially as a drug screening platform.
期刊介绍:
Macromolecular Bioscience is a leading journal at the intersection of polymer and materials sciences with life science and medicine. With an Impact Factor of 2.895 (2018 Journal Impact Factor, Journal Citation Reports (Clarivate Analytics, 2019)), it is currently ranked among the top biomaterials and polymer journals.
Macromolecular Bioscience offers an attractive mixture of high-quality Reviews, Feature Articles, Communications, and Full Papers.
With average reviewing times below 30 days, publication times of 2.5 months and listing in all major indices, including Medline, Macromolecular Bioscience is the journal of choice for your best contributions at the intersection of polymer and life sciences.