Brian D Carey, Shuiqing Yu, Jillian Geiger, Chengjin Ye, Louis M Huzella, Rebecca J Reeder, Monika Mehta, Shawn Hirsch, Rebecca Bernbaum, Beatrice Cubitt, Bapi Pahar, Scott M Anthony, Anthony Marketon, John G Bernbaum, Julie P Tran, Ian Crozier, Luis Martínez-Sobrido, Gabriella Worwa, Juan Carlos de la Torre, Jens H Kuhn
{"title":"对豚鼠安全有效的拉沙病毒减毒活疫苗候选产品。","authors":"Brian D Carey, Shuiqing Yu, Jillian Geiger, Chengjin Ye, Louis M Huzella, Rebecca J Reeder, Monika Mehta, Shawn Hirsch, Rebecca Bernbaum, Beatrice Cubitt, Bapi Pahar, Scott M Anthony, Anthony Marketon, John G Bernbaum, Julie P Tran, Ian Crozier, Luis Martínez-Sobrido, Gabriella Worwa, Juan Carlos de la Torre, Jens H Kuhn","doi":"10.1038/s41541-024-01012-w","DOIUrl":null,"url":null,"abstract":"<p><p>Lassa virus (LASV) is a rodent-borne mammarenavirus that causes tens to hundreds of thousands of human infections annually in Western Africa. Approximately 20% of these infections progress to Lassa fever (LF), an acute disease with case-fatality rates from ≈20-70%. Currently, there are no approved vaccines or specific therapeutics to prevent or treat LF. The LASV genome consists of a small (S) segment that has two genes, GP and NP, and a large (L) segment that has two genes, L and Z. In both segments, the two genes are separated by non-coding intergenic regions (IGRs). Recombinant LASVs (rLASVs), in which the L segment IGR was replaced with the S segment IGR or in which the GP gene was codon-deoptimized, lost fitness in vitro, were highly attenuated in vivo, and, when used as vaccines, protected domesticated guinea pigs from otherwise lethal LASV exposure. Here, we report the generation of rLASV/IGR-CD, which includes both determinants of attenuation and further enhances the safety of the vaccine compared with its predecessors. rLASV/IGR-CD grew to high titers in Vero cells, which are approved for human vaccine production, but did not cause signs of disease or pathology in guinea pigs. Importantly, guinea pigs vaccinated with rLASV/IGR-CD were completely protected from disease and death after a typically lethal exposure to wild-type LASV. Our data support the development of rLASV/IGR-CD as a live-attenuated LF vaccine with stringent safety features.</p>","PeriodicalId":19335,"journal":{"name":"NPJ Vaccines","volume":"9 1","pages":"220"},"PeriodicalIF":6.9000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570604/pdf/","citationCount":"0","resultStr":"{\"title\":\"A Lassa virus live attenuated vaccine candidate that is safe and efficacious in guinea pigs.\",\"authors\":\"Brian D Carey, Shuiqing Yu, Jillian Geiger, Chengjin Ye, Louis M Huzella, Rebecca J Reeder, Monika Mehta, Shawn Hirsch, Rebecca Bernbaum, Beatrice Cubitt, Bapi Pahar, Scott M Anthony, Anthony Marketon, John G Bernbaum, Julie P Tran, Ian Crozier, Luis Martínez-Sobrido, Gabriella Worwa, Juan Carlos de la Torre, Jens H Kuhn\",\"doi\":\"10.1038/s41541-024-01012-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Lassa virus (LASV) is a rodent-borne mammarenavirus that causes tens to hundreds of thousands of human infections annually in Western Africa. Approximately 20% of these infections progress to Lassa fever (LF), an acute disease with case-fatality rates from ≈20-70%. Currently, there are no approved vaccines or specific therapeutics to prevent or treat LF. The LASV genome consists of a small (S) segment that has two genes, GP and NP, and a large (L) segment that has two genes, L and Z. In both segments, the two genes are separated by non-coding intergenic regions (IGRs). Recombinant LASVs (rLASVs), in which the L segment IGR was replaced with the S segment IGR or in which the GP gene was codon-deoptimized, lost fitness in vitro, were highly attenuated in vivo, and, when used as vaccines, protected domesticated guinea pigs from otherwise lethal LASV exposure. Here, we report the generation of rLASV/IGR-CD, which includes both determinants of attenuation and further enhances the safety of the vaccine compared with its predecessors. rLASV/IGR-CD grew to high titers in Vero cells, which are approved for human vaccine production, but did not cause signs of disease or pathology in guinea pigs. Importantly, guinea pigs vaccinated with rLASV/IGR-CD were completely protected from disease and death after a typically lethal exposure to wild-type LASV. Our data support the development of rLASV/IGR-CD as a live-attenuated LF vaccine with stringent safety features.</p>\",\"PeriodicalId\":19335,\"journal\":{\"name\":\"NPJ Vaccines\",\"volume\":\"9 1\",\"pages\":\"220\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11570604/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Vaccines\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41541-024-01012-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Vaccines","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41541-024-01012-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
拉沙病毒(LASV)是一种啮齿类动物传播的哺乳动物病毒,每年在西非造成数万至数十万人感染。其中约 20% 的感染会发展成拉沙热(LF),这是一种急性疾病,病死率≈20-70%。目前,还没有获得批准的疫苗或特效疗法来预防或治疗拉沙热。LASV 基因组由一个小(S)区段和一个大(L)区段组成,小(S)区段有两个基因,即 GP 和 NP,大(L)区段有两个基因,即 L 和 Z。用 S 段 IGR 替代 L 段 IGR 或对 GP 基因进行密码子优化的重组 LASV(rLASV)在体外丧失了适应性,在体内高度减毒,而且在用作疫苗时能保护驯化的豚鼠免于接触致命的 LASV。在这里,我们报告了 rLASV/IGR-CD 的产生情况,它包含了两种减毒决定因子,与前代疫苗相比,进一步提高了疫苗的安全性。rLASV/IGR-CD 在 Vero 细胞中生长到高滴度,这已被批准用于人类疫苗的生产,但不会导致豚鼠出现疾病或病理症状。重要的是,接种了 rLASV/IGR-CD 疫苗的豚鼠在暴露于野生型 LASV 的典型致死性接触后完全不会发病和死亡。我们的数据支持将 rLASV/IGR-CD 开发成具有严格安全性的 LF 减毒活疫苗。
A Lassa virus live attenuated vaccine candidate that is safe and efficacious in guinea pigs.
Lassa virus (LASV) is a rodent-borne mammarenavirus that causes tens to hundreds of thousands of human infections annually in Western Africa. Approximately 20% of these infections progress to Lassa fever (LF), an acute disease with case-fatality rates from ≈20-70%. Currently, there are no approved vaccines or specific therapeutics to prevent or treat LF. The LASV genome consists of a small (S) segment that has two genes, GP and NP, and a large (L) segment that has two genes, L and Z. In both segments, the two genes are separated by non-coding intergenic regions (IGRs). Recombinant LASVs (rLASVs), in which the L segment IGR was replaced with the S segment IGR or in which the GP gene was codon-deoptimized, lost fitness in vitro, were highly attenuated in vivo, and, when used as vaccines, protected domesticated guinea pigs from otherwise lethal LASV exposure. Here, we report the generation of rLASV/IGR-CD, which includes both determinants of attenuation and further enhances the safety of the vaccine compared with its predecessors. rLASV/IGR-CD grew to high titers in Vero cells, which are approved for human vaccine production, but did not cause signs of disease or pathology in guinea pigs. Importantly, guinea pigs vaccinated with rLASV/IGR-CD were completely protected from disease and death after a typically lethal exposure to wild-type LASV. Our data support the development of rLASV/IGR-CD as a live-attenuated LF vaccine with stringent safety features.
NPJ VaccinesImmunology and Microbiology-Immunology
CiteScore
11.90
自引率
4.30%
发文量
146
审稿时长
11 weeks
期刊介绍:
Online-only and open access, npj Vaccines is dedicated to highlighting the most important scientific advances in vaccine research and development.