{"title":"被忽视的第一肋间韧带:它有助于稳定韦伯器械吗?","authors":"Jake Leyhr, Tatjana Haitina, Nathan C Bird","doi":"10.1111/joa.14168","DOIUrl":null,"url":null,"abstract":"<p><p>The Weberian apparatus is a novel hearing adaptation that facilitates increased hearing sensitivity in otophysan fishes. The apparatus is a complex system composed of modifications to anterior vertebral elements, the inner ear, and the swim bladder. A critical piece of the system that often receives minor attention are the various ligaments that bridge these three regions. The most famous of the ligaments is the interossicular ligament, which connects the Weberian ossicle chain (scaphium-intercalarium-tripus). Several other ligaments are present, including the suspensor (tripus to parapophysis 4) and the triple ligament (tripus-os suspensorium-tunica externa). Here, by combining diffusible iodine-based contrast enhancement (DICE) and propagation phase-contrast synchrotron radiation micro-computed tomography (PPC-SRμCT) with classic histological methods, we shine new light on the first intercostal ligament (ICL1) and discuss its potential function in relation to the Weberian apparatus. ICL1 is nearly absent from the cypriniform literature, typically only mentioned in a general discussion together with other intercostal ligaments. This study examines the development and structure of ICL1 comparatively with the other definitive Weberian ligaments in the zebrafish (Danio rerio). We provide a comprehensive view of three-dimensional shape, development, and composition to generate hypotheses regarding potential functions of ICL1 within the greater Weberian apparatus. Given new detail presented herein regarding the structure of ICL1, modifications to rib 5 and parapophysis 4 for ICL1 attachment, and the alignment of ICL1 with the os suspensorium, we propose a supportive (anchoring) role of ICL1 to aid in minimizing non-optimal movement of the structures of the fourth vertebra. This addition would focus vibrations anteriorly through the ossicle chain with minimal signal loss in zebrafish and other species with similar Weberian apparatus morphologies. We conclude that ICL1 should be included in future analyses of Weberian apparatus function where ligaments are addressed.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The overlooked first intercostal ligament: Does it help to stabilize the Weberian apparatus?\",\"authors\":\"Jake Leyhr, Tatjana Haitina, Nathan C Bird\",\"doi\":\"10.1111/joa.14168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The Weberian apparatus is a novel hearing adaptation that facilitates increased hearing sensitivity in otophysan fishes. The apparatus is a complex system composed of modifications to anterior vertebral elements, the inner ear, and the swim bladder. A critical piece of the system that often receives minor attention are the various ligaments that bridge these three regions. The most famous of the ligaments is the interossicular ligament, which connects the Weberian ossicle chain (scaphium-intercalarium-tripus). Several other ligaments are present, including the suspensor (tripus to parapophysis 4) and the triple ligament (tripus-os suspensorium-tunica externa). Here, by combining diffusible iodine-based contrast enhancement (DICE) and propagation phase-contrast synchrotron radiation micro-computed tomography (PPC-SRμCT) with classic histological methods, we shine new light on the first intercostal ligament (ICL1) and discuss its potential function in relation to the Weberian apparatus. ICL1 is nearly absent from the cypriniform literature, typically only mentioned in a general discussion together with other intercostal ligaments. This study examines the development and structure of ICL1 comparatively with the other definitive Weberian ligaments in the zebrafish (Danio rerio). We provide a comprehensive view of three-dimensional shape, development, and composition to generate hypotheses regarding potential functions of ICL1 within the greater Weberian apparatus. Given new detail presented herein regarding the structure of ICL1, modifications to rib 5 and parapophysis 4 for ICL1 attachment, and the alignment of ICL1 with the os suspensorium, we propose a supportive (anchoring) role of ICL1 to aid in minimizing non-optimal movement of the structures of the fourth vertebra. This addition would focus vibrations anteriorly through the ossicle chain with minimal signal loss in zebrafish and other species with similar Weberian apparatus morphologies. We conclude that ICL1 should be included in future analyses of Weberian apparatus function where ligaments are addressed.</p>\",\"PeriodicalId\":14971,\"journal\":{\"name\":\"Journal of Anatomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Anatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/joa.14168\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.14168","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
The overlooked first intercostal ligament: Does it help to stabilize the Weberian apparatus?
The Weberian apparatus is a novel hearing adaptation that facilitates increased hearing sensitivity in otophysan fishes. The apparatus is a complex system composed of modifications to anterior vertebral elements, the inner ear, and the swim bladder. A critical piece of the system that often receives minor attention are the various ligaments that bridge these three regions. The most famous of the ligaments is the interossicular ligament, which connects the Weberian ossicle chain (scaphium-intercalarium-tripus). Several other ligaments are present, including the suspensor (tripus to parapophysis 4) and the triple ligament (tripus-os suspensorium-tunica externa). Here, by combining diffusible iodine-based contrast enhancement (DICE) and propagation phase-contrast synchrotron radiation micro-computed tomography (PPC-SRμCT) with classic histological methods, we shine new light on the first intercostal ligament (ICL1) and discuss its potential function in relation to the Weberian apparatus. ICL1 is nearly absent from the cypriniform literature, typically only mentioned in a general discussion together with other intercostal ligaments. This study examines the development and structure of ICL1 comparatively with the other definitive Weberian ligaments in the zebrafish (Danio rerio). We provide a comprehensive view of three-dimensional shape, development, and composition to generate hypotheses regarding potential functions of ICL1 within the greater Weberian apparatus. Given new detail presented herein regarding the structure of ICL1, modifications to rib 5 and parapophysis 4 for ICL1 attachment, and the alignment of ICL1 with the os suspensorium, we propose a supportive (anchoring) role of ICL1 to aid in minimizing non-optimal movement of the structures of the fourth vertebra. This addition would focus vibrations anteriorly through the ossicle chain with minimal signal loss in zebrafish and other species with similar Weberian apparatus morphologies. We conclude that ICL1 should be included in future analyses of Weberian apparatus function where ligaments are addressed.
期刊介绍:
Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system.
Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract.
We particularly welcome submissions in the following areas:
Cell biology and tissue architecture
Comparative functional morphology
Developmental biology
Evolutionary developmental biology
Evolutionary morphology
Functional human anatomy
Integrative vertebrate paleontology
Methodological innovations in anatomical research
Musculoskeletal system
Neuroanatomy and neurodegeneration
Significant advances in anatomical education.