Hadyn DeLeeuw, Michael Cramberg, Matthew Dille, Emily Pick, Mary Thompson, Bruce A Young
{"title":"美洲短吻鳄(Alligator mississippiensis)脊髓脑脊液流失的解剖学特征。","authors":"Hadyn DeLeeuw, Michael Cramberg, Matthew Dille, Emily Pick, Mary Thompson, Bruce A Young","doi":"10.1111/joa.14177","DOIUrl":null,"url":null,"abstract":"<p><p>A variety of anatomical techniques, imaging modalities, dyes and contrast agents, were used to document the mechanisms/routes whereby spinal cerebrospinal fluid (CSF) would move beyond the confines of the spinal dura in the American alligator, Alligator mississippiensis. Three pathways for CSF loss were identified: spinal arachnoid granulations, perineural flow along the spinal nerves, and lymphatic drainage (both along the surface of the dura and at the venous plexus surrounding the spinal ganglion). These same three pathways for spinal CSF loss have been documented in mammals, suggesting that they may be a common feature of (at least) amniotes. Crocodilians, including A. mississippiensis, have the largest epidural venous sinus system of any vertebrate, the present study suggests that, as in mammals, the venous complex of the alligator plays a direct role in regulating the absorption of CSF from the spinal compartment.</p>","PeriodicalId":14971,"journal":{"name":"Journal of Anatomy","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Anatomy of spinal CSF loss in the American alligator (Alligator mississippiensis).\",\"authors\":\"Hadyn DeLeeuw, Michael Cramberg, Matthew Dille, Emily Pick, Mary Thompson, Bruce A Young\",\"doi\":\"10.1111/joa.14177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>A variety of anatomical techniques, imaging modalities, dyes and contrast agents, were used to document the mechanisms/routes whereby spinal cerebrospinal fluid (CSF) would move beyond the confines of the spinal dura in the American alligator, Alligator mississippiensis. Three pathways for CSF loss were identified: spinal arachnoid granulations, perineural flow along the spinal nerves, and lymphatic drainage (both along the surface of the dura and at the venous plexus surrounding the spinal ganglion). These same three pathways for spinal CSF loss have been documented in mammals, suggesting that they may be a common feature of (at least) amniotes. Crocodilians, including A. mississippiensis, have the largest epidural venous sinus system of any vertebrate, the present study suggests that, as in mammals, the venous complex of the alligator plays a direct role in regulating the absorption of CSF from the spinal compartment.</p>\",\"PeriodicalId\":14971,\"journal\":{\"name\":\"Journal of Anatomy\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Anatomy\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1111/joa.14177\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ANATOMY & MORPHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Anatomy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1111/joa.14177","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ANATOMY & MORPHOLOGY","Score":null,"Total":0}
Anatomy of spinal CSF loss in the American alligator (Alligator mississippiensis).
A variety of anatomical techniques, imaging modalities, dyes and contrast agents, were used to document the mechanisms/routes whereby spinal cerebrospinal fluid (CSF) would move beyond the confines of the spinal dura in the American alligator, Alligator mississippiensis. Three pathways for CSF loss were identified: spinal arachnoid granulations, perineural flow along the spinal nerves, and lymphatic drainage (both along the surface of the dura and at the venous plexus surrounding the spinal ganglion). These same three pathways for spinal CSF loss have been documented in mammals, suggesting that they may be a common feature of (at least) amniotes. Crocodilians, including A. mississippiensis, have the largest epidural venous sinus system of any vertebrate, the present study suggests that, as in mammals, the venous complex of the alligator plays a direct role in regulating the absorption of CSF from the spinal compartment.
期刊介绍:
Journal of Anatomy is an international peer-reviewed journal sponsored by the Anatomical Society. The journal publishes original papers, invited review articles and book reviews. Its main focus is to understand anatomy through an analysis of structure, function, development and evolution. Priority will be given to studies of that clearly articulate their relevance to the anatomical community. Focal areas include: experimental studies, contributions based on molecular and cell biology and on the application of modern imaging techniques and papers with novel methods or synthetic perspective on an anatomical system.
Studies that are essentially descriptive anatomy are appropriate only if they communicate clearly a broader functional or evolutionary significance. You must clearly state the broader implications of your work in the abstract.
We particularly welcome submissions in the following areas:
Cell biology and tissue architecture
Comparative functional morphology
Developmental biology
Evolutionary developmental biology
Evolutionary morphology
Functional human anatomy
Integrative vertebrate paleontology
Methodological innovations in anatomical research
Musculoskeletal system
Neuroanatomy and neurodegeneration
Significant advances in anatomical education.