Yanqi Zhang, Nolan McKibben, Qi Li, Chao Zhao, Libo Tan
{"title":"由食品级生物聚合物稳定的叶黄素乳液提高了叶黄素的生物利用率,并改善了患有早产儿视网膜病变的新生大鼠视网膜血管形态。","authors":"Yanqi Zhang, Nolan McKibben, Qi Li, Chao Zhao, Libo Tan","doi":"10.1016/j.tjnut.2024.11.010","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Retinopathy of prematurity (ROP) is a leading cause of blindness in infants, affecting 32% of hospitalized preterm babies. Oxidative stress, a primary pathogenic factor in ROP, triggers abnormal neovascularization of retinal vessels. Lutein, an antioxidant and the main component of macular pigment, is found in low levels in preterm infants and may help ameliorate ROP. However, its low bioavailability limits its application as a nutritional intervention.</p><p><strong>Objective: </strong>The aim of the study was to assess the effect of a lutein emulsion stabilized by a food-grade biopolymer on lutein bioavailability in neonatal rats with ROP and examine the effects of both unemulsified lutein and lutein emulsion on the disease.</p><p><strong>Methods: </strong>Neonatal rats were subcutaneously administered KRN 633 (10 mg/kg BW) on postnatal days 7 and 8 (P7 and P8) to induce ROP. Neonatal rats that did not receive the treatment served as the control. From P9 to P21, both ROP and non-ROP rats were divided into three groups and given daily doses of olive oil, unemulsified lutein (2 mg/kg BW lutein), or lutein emulsion (2 mg/kg BW lutein). On P22, serum and tissues were collected. Lutein concentrations were measured using UPLC, and retinal morphology was assessed using immunohistochemistry.</p><p><strong>Results: </strong>Rats treated with lutein emulsion had significantly higher serum and tissue lutein concentrations than those receiving unemulsified lutein. Morphological assessments showed that ROP rats had more tortuous arteries, increased capillary density, enlarged vessels, reduced astrocyte density, and decreased neuronal cells. Both unemulsified lutein and lutein emulsion alleviated these abnormalities, with lutein emulsion showing superior efficacy in restoring neuronal cell levels to normal in the peripheral retina.</p><p><strong>Conclusions: </strong>Lutein, in both unemulsified and emulsified forms, effectively inhibited ROP progression in neonatal rats. The biopolymer-based lutein emulsion showed promise as a delivery system to enhance lutein bioavailability and mitigate ROP in preterm infants.</p>","PeriodicalId":16620,"journal":{"name":"Journal of Nutrition","volume":" ","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Lutein Emulsion Stabilized by a Food-Grade Biopolymer Enhanced Lutein Bioavailability and Improved Retinal Vessel Morphology in Neonatal Rats with Retinopathy of Prematurity.\",\"authors\":\"Yanqi Zhang, Nolan McKibben, Qi Li, Chao Zhao, Libo Tan\",\"doi\":\"10.1016/j.tjnut.2024.11.010\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Retinopathy of prematurity (ROP) is a leading cause of blindness in infants, affecting 32% of hospitalized preterm babies. Oxidative stress, a primary pathogenic factor in ROP, triggers abnormal neovascularization of retinal vessels. Lutein, an antioxidant and the main component of macular pigment, is found in low levels in preterm infants and may help ameliorate ROP. However, its low bioavailability limits its application as a nutritional intervention.</p><p><strong>Objective: </strong>The aim of the study was to assess the effect of a lutein emulsion stabilized by a food-grade biopolymer on lutein bioavailability in neonatal rats with ROP and examine the effects of both unemulsified lutein and lutein emulsion on the disease.</p><p><strong>Methods: </strong>Neonatal rats were subcutaneously administered KRN 633 (10 mg/kg BW) on postnatal days 7 and 8 (P7 and P8) to induce ROP. Neonatal rats that did not receive the treatment served as the control. From P9 to P21, both ROP and non-ROP rats were divided into three groups and given daily doses of olive oil, unemulsified lutein (2 mg/kg BW lutein), or lutein emulsion (2 mg/kg BW lutein). On P22, serum and tissues were collected. Lutein concentrations were measured using UPLC, and retinal morphology was assessed using immunohistochemistry.</p><p><strong>Results: </strong>Rats treated with lutein emulsion had significantly higher serum and tissue lutein concentrations than those receiving unemulsified lutein. Morphological assessments showed that ROP rats had more tortuous arteries, increased capillary density, enlarged vessels, reduced astrocyte density, and decreased neuronal cells. Both unemulsified lutein and lutein emulsion alleviated these abnormalities, with lutein emulsion showing superior efficacy in restoring neuronal cell levels to normal in the peripheral retina.</p><p><strong>Conclusions: </strong>Lutein, in both unemulsified and emulsified forms, effectively inhibited ROP progression in neonatal rats. The biopolymer-based lutein emulsion showed promise as a delivery system to enhance lutein bioavailability and mitigate ROP in preterm infants.</p>\",\"PeriodicalId\":16620,\"journal\":{\"name\":\"Journal of Nutrition\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nutrition\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.tjnut.2024.11.010\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NUTRITION & DIETETICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nutrition","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.tjnut.2024.11.010","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NUTRITION & DIETETICS","Score":null,"Total":0}
Lutein Emulsion Stabilized by a Food-Grade Biopolymer Enhanced Lutein Bioavailability and Improved Retinal Vessel Morphology in Neonatal Rats with Retinopathy of Prematurity.
Background: Retinopathy of prematurity (ROP) is a leading cause of blindness in infants, affecting 32% of hospitalized preterm babies. Oxidative stress, a primary pathogenic factor in ROP, triggers abnormal neovascularization of retinal vessels. Lutein, an antioxidant and the main component of macular pigment, is found in low levels in preterm infants and may help ameliorate ROP. However, its low bioavailability limits its application as a nutritional intervention.
Objective: The aim of the study was to assess the effect of a lutein emulsion stabilized by a food-grade biopolymer on lutein bioavailability in neonatal rats with ROP and examine the effects of both unemulsified lutein and lutein emulsion on the disease.
Methods: Neonatal rats were subcutaneously administered KRN 633 (10 mg/kg BW) on postnatal days 7 and 8 (P7 and P8) to induce ROP. Neonatal rats that did not receive the treatment served as the control. From P9 to P21, both ROP and non-ROP rats were divided into three groups and given daily doses of olive oil, unemulsified lutein (2 mg/kg BW lutein), or lutein emulsion (2 mg/kg BW lutein). On P22, serum and tissues were collected. Lutein concentrations were measured using UPLC, and retinal morphology was assessed using immunohistochemistry.
Results: Rats treated with lutein emulsion had significantly higher serum and tissue lutein concentrations than those receiving unemulsified lutein. Morphological assessments showed that ROP rats had more tortuous arteries, increased capillary density, enlarged vessels, reduced astrocyte density, and decreased neuronal cells. Both unemulsified lutein and lutein emulsion alleviated these abnormalities, with lutein emulsion showing superior efficacy in restoring neuronal cell levels to normal in the peripheral retina.
Conclusions: Lutein, in both unemulsified and emulsified forms, effectively inhibited ROP progression in neonatal rats. The biopolymer-based lutein emulsion showed promise as a delivery system to enhance lutein bioavailability and mitigate ROP in preterm infants.
期刊介绍:
The Journal of Nutrition (JN/J Nutr) publishes peer-reviewed original research papers covering all aspects of experimental nutrition in humans and other animal species; special articles such as reviews and biographies of prominent nutrition scientists; and issues, opinions, and commentaries on controversial issues in nutrition. Supplements are frequently published to provide extended discussion of topics of special interest.