{"title":"用于病毒检测的纳米粒子电化学生物传感器。","authors":"Anandavalli Baskar , Keerthana Madhivanan , Raji Atchudan , Sandeep Arya , Ashok K. Sundramoorthy","doi":"10.1016/j.cca.2024.120054","DOIUrl":null,"url":null,"abstract":"<div><div>Viruses pose a significant threat to global public health, underscoring the urgent need for rapid, accurate, and sensitive diagnostic methods for timely detection and intervention. The demand for efficient diagnostics that can detect a wide range of viral pathogens has never been greater. In this context, metal nanoparticle-based biosensors have emerged as a promising solution, offering exceptional sensitivity for detecting various analytes, including nucleic acids (DNA/RNA), proteins, and other biomarkers associated with pathogens. These biosensors are particularly critical for the development of point-of-care (POC) diagnostic tools, enabling early detection of infectious agents. This review explores recent advancements in nanoparticle (NP)-based biosensors that utilize noble metals like gold (Au), silver (Ag), and platinum (Pt) for viral pathogen detection, focusing on viruses such as SARS-CoV, HIV, hepatitis, influenza, and Zika. It highlights the role of NP-based electrochemical sensors and compares traditional and contemporary detection techniques. The review also examines key performance metrics such as limits of detection (LOD), linear detection ranges, cost-effectiveness, and accessibility, with a special emphasis on their application in POC diagnostics. The aim is to provide researchers with valuable insights into the development of next-generation NP-based biosensors, facilitating the creation of innovative diagnostic technologies for viral diseases.</div></div>","PeriodicalId":10205,"journal":{"name":"Clinica Chimica Acta","volume":"566 ","pages":"Article 120054"},"PeriodicalIF":3.2000,"publicationDate":"2024-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoparticle electrochemical biosensors for virus detection\",\"authors\":\"Anandavalli Baskar , Keerthana Madhivanan , Raji Atchudan , Sandeep Arya , Ashok K. Sundramoorthy\",\"doi\":\"10.1016/j.cca.2024.120054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Viruses pose a significant threat to global public health, underscoring the urgent need for rapid, accurate, and sensitive diagnostic methods for timely detection and intervention. The demand for efficient diagnostics that can detect a wide range of viral pathogens has never been greater. In this context, metal nanoparticle-based biosensors have emerged as a promising solution, offering exceptional sensitivity for detecting various analytes, including nucleic acids (DNA/RNA), proteins, and other biomarkers associated with pathogens. These biosensors are particularly critical for the development of point-of-care (POC) diagnostic tools, enabling early detection of infectious agents. This review explores recent advancements in nanoparticle (NP)-based biosensors that utilize noble metals like gold (Au), silver (Ag), and platinum (Pt) for viral pathogen detection, focusing on viruses such as SARS-CoV, HIV, hepatitis, influenza, and Zika. It highlights the role of NP-based electrochemical sensors and compares traditional and contemporary detection techniques. The review also examines key performance metrics such as limits of detection (LOD), linear detection ranges, cost-effectiveness, and accessibility, with a special emphasis on their application in POC diagnostics. The aim is to provide researchers with valuable insights into the development of next-generation NP-based biosensors, facilitating the creation of innovative diagnostic technologies for viral diseases.</div></div>\",\"PeriodicalId\":10205,\"journal\":{\"name\":\"Clinica Chimica Acta\",\"volume\":\"566 \",\"pages\":\"Article 120054\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-11-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Clinica Chimica Acta\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0009898124023076\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICAL LABORATORY TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinica Chimica Acta","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0009898124023076","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL LABORATORY TECHNOLOGY","Score":null,"Total":0}
Nanoparticle electrochemical biosensors for virus detection
Viruses pose a significant threat to global public health, underscoring the urgent need for rapid, accurate, and sensitive diagnostic methods for timely detection and intervention. The demand for efficient diagnostics that can detect a wide range of viral pathogens has never been greater. In this context, metal nanoparticle-based biosensors have emerged as a promising solution, offering exceptional sensitivity for detecting various analytes, including nucleic acids (DNA/RNA), proteins, and other biomarkers associated with pathogens. These biosensors are particularly critical for the development of point-of-care (POC) diagnostic tools, enabling early detection of infectious agents. This review explores recent advancements in nanoparticle (NP)-based biosensors that utilize noble metals like gold (Au), silver (Ag), and platinum (Pt) for viral pathogen detection, focusing on viruses such as SARS-CoV, HIV, hepatitis, influenza, and Zika. It highlights the role of NP-based electrochemical sensors and compares traditional and contemporary detection techniques. The review also examines key performance metrics such as limits of detection (LOD), linear detection ranges, cost-effectiveness, and accessibility, with a special emphasis on their application in POC diagnostics. The aim is to provide researchers with valuable insights into the development of next-generation NP-based biosensors, facilitating the creation of innovative diagnostic technologies for viral diseases.
期刊介绍:
The Official Journal of the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC)
Clinica Chimica Acta is a high-quality journal which publishes original Research Communications in the field of clinical chemistry and laboratory medicine, defined as the diagnostic application of chemistry, biochemistry, immunochemistry, biochemical aspects of hematology, toxicology, and molecular biology to the study of human disease in body fluids and cells.
The objective of the journal is to publish novel information leading to a better understanding of biological mechanisms of human diseases, their prevention, diagnosis, and patient management. Reports of an applied clinical character are also welcome. Papers concerned with normal metabolic processes or with constituents of normal cells or body fluids, such as reports of experimental or clinical studies in animals, are only considered when they are clearly and directly relevant to human disease. Evaluation of commercial products have a low priority for publication, unless they are novel or represent a technological breakthrough. Studies dealing with effects of drugs and natural products and studies dealing with the redox status in various diseases are not within the journal''s scope. Development and evaluation of novel analytical methodologies where applicable to diagnostic clinical chemistry and laboratory medicine, including point-of-care testing, and topics on laboratory management and informatics will also be considered. Studies focused on emerging diagnostic technologies and (big) data analysis procedures including digitalization, mobile Health, and artificial Intelligence applied to Laboratory Medicine are also of interest.