Markus Wagner, Oliver Fugger, Florian Foschum, Alwin Kienle
{"title":"开发用于 400 至 1550 纳米生物医学光学的硅基模型。","authors":"Markus Wagner, Oliver Fugger, Florian Foschum, Alwin Kienle","doi":"10.1364/BOE.533481","DOIUrl":null,"url":null,"abstract":"<p><p>This work describes the development of silicone-based evaluation phantoms for biomedical optics in the wavelength range from 400 to 1550 nm. The absorption coefficient <i>μ</i> <sub>a</sub> and the reduced scattering coefficient <math><msubsup><mi>μ</mi> <mtext>s</mtext> <mrow><mi>'</mi></mrow> </msubsup> </math> were determined using an integrating sphere setup. Zirconium dioxide pigments were used as scatterers and carbon black as absorbers. We developed an in-house manufacturing process using a Hauschild SpeedMixer to ensure reproducibility. A set of nine cubic phantoms with three different reduced scattering and absorption coefficients was produced. Prediction of the <i>μ</i> <sub>a</sub> and <math><msubsup><mi>μ</mi> <mtext>s</mtext> <mrow><mi>'</mi></mrow> </msubsup> </math> was done by using the weighted mass concentrations of the used materials. The average prediction accuracy over all wavelengths and phantoms is 1.0% for the reduced scattering coefficient and 3.5% for the absorption coefficient.</p>","PeriodicalId":8969,"journal":{"name":"Biomedical optics express","volume":"15 11","pages":"6561-6572"},"PeriodicalIF":2.9000,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563330/pdf/","citationCount":"0","resultStr":"{\"title\":\"Development of silicone-based phantoms for biomedical optics from 400 to 1550 nm.\",\"authors\":\"Markus Wagner, Oliver Fugger, Florian Foschum, Alwin Kienle\",\"doi\":\"10.1364/BOE.533481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work describes the development of silicone-based evaluation phantoms for biomedical optics in the wavelength range from 400 to 1550 nm. The absorption coefficient <i>μ</i> <sub>a</sub> and the reduced scattering coefficient <math><msubsup><mi>μ</mi> <mtext>s</mtext> <mrow><mi>'</mi></mrow> </msubsup> </math> were determined using an integrating sphere setup. Zirconium dioxide pigments were used as scatterers and carbon black as absorbers. We developed an in-house manufacturing process using a Hauschild SpeedMixer to ensure reproducibility. A set of nine cubic phantoms with three different reduced scattering and absorption coefficients was produced. Prediction of the <i>μ</i> <sub>a</sub> and <math><msubsup><mi>μ</mi> <mtext>s</mtext> <mrow><mi>'</mi></mrow> </msubsup> </math> was done by using the weighted mass concentrations of the used materials. The average prediction accuracy over all wavelengths and phantoms is 1.0% for the reduced scattering coefficient and 3.5% for the absorption coefficient.</p>\",\"PeriodicalId\":8969,\"journal\":{\"name\":\"Biomedical optics express\",\"volume\":\"15 11\",\"pages\":\"6561-6572\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563330/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomedical optics express\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1364/BOE.533481\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomedical optics express","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1364/BOE.533481","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
摘要
这项工作描述了波长范围为 400 至 1550 nm 的生物医学光学硅基评估模型的开发情况。利用积分球装置测定了吸收系数 μ a 和还原散射系数 μ s '。二氧化锆颜料用作散射体,炭黑用作吸收体。我们使用 Hauschild SpeedMixer 开发了一套内部制造流程,以确保可重复性。我们制作了一套九个立方体模型,它们具有三种不同的还原散射和吸收系数。使用所用材料的加权质量浓度来预测 μ a 和 μ s。所有波长和模型的平均预测精度分别为:降低散射系数为 1.0%,吸收系数为 3.5%。
Development of silicone-based phantoms for biomedical optics from 400 to 1550 nm.
This work describes the development of silicone-based evaluation phantoms for biomedical optics in the wavelength range from 400 to 1550 nm. The absorption coefficient μa and the reduced scattering coefficient were determined using an integrating sphere setup. Zirconium dioxide pigments were used as scatterers and carbon black as absorbers. We developed an in-house manufacturing process using a Hauschild SpeedMixer to ensure reproducibility. A set of nine cubic phantoms with three different reduced scattering and absorption coefficients was produced. Prediction of the μa and was done by using the weighted mass concentrations of the used materials. The average prediction accuracy over all wavelengths and phantoms is 1.0% for the reduced scattering coefficient and 3.5% for the absorption coefficient.
期刊介绍:
The journal''s scope encompasses fundamental research, technology development, biomedical studies and clinical applications. BOEx focuses on the leading edge topics in the field, including:
Tissue optics and spectroscopy
Novel microscopies
Optical coherence tomography
Diffuse and fluorescence tomography
Photoacoustic and multimodal imaging
Molecular imaging and therapies
Nanophotonic biosensing
Optical biophysics/photobiology
Microfluidic optical devices
Vision research.