{"title":"RNA 结合蛋白 CUGBP2/ETR-3 调节 STAT3 的替代剪接。","authors":"Miki Kise , So Masaki , Naoyuki Kataoka , Kenji Suzuki","doi":"10.1016/j.bbrc.2024.151000","DOIUrl":null,"url":null,"abstract":"<div><div>Signal transducer and activator of transcription 3 (STAT3) is a multifactorial regulator involved in many biological responses. Alternative splicing of STAT3 pre-mRNA leads to an internal 50-nucleotide deletion of exon 23 selecting an alternative 3’ acceptor site, resulting in the generation of two splicing isoforms, STAT3α and STAT3β. STAT3β lacks 55 amino acid-residue transactivation domain at the C-terminal of STAT3α replacing seven unique amino acids. Although STAT3β was originally thought to be a dominant negative isoform of STAT3α, accumulating evidence have shown that STAT3β possesses both its unique functions and those that overlap with STAT3α in fundamental cellular processes. However, much remains unknown about STAT3 pre-mRNA alternative splicing in determining the balance between STAT3 isoforms. In this study, we identified <em>cis</em>-regulatory elements and CUGBP2/ETR-3 as a novel <em>trans</em>-acting factor that regulates STAT3 alternative splicing. Our findings demonstrate that STAT3 splicing can be modulated by CUGBP2 via association with UG-rich elements of intron 22, providing a novel insight into the mechanism of STAT3 alternative splicing. CUGBP2 would be a crucial molecule regulating the balance of STAT3 isoform expression, thus targeting CUGBP2 and its recognition sequences in intron 22 of STAT3 might impact on various biological processes regulated by STAT3 signaling pathway.</div></div>","PeriodicalId":8779,"journal":{"name":"Biochemical and biophysical research communications","volume":"739 ","pages":"Article 151000"},"PeriodicalIF":2.5000,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"RNA binding protein CUGBP2/ETR-3 regulates STAT3 alternative splicing\",\"authors\":\"Miki Kise , So Masaki , Naoyuki Kataoka , Kenji Suzuki\",\"doi\":\"10.1016/j.bbrc.2024.151000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Signal transducer and activator of transcription 3 (STAT3) is a multifactorial regulator involved in many biological responses. Alternative splicing of STAT3 pre-mRNA leads to an internal 50-nucleotide deletion of exon 23 selecting an alternative 3’ acceptor site, resulting in the generation of two splicing isoforms, STAT3α and STAT3β. STAT3β lacks 55 amino acid-residue transactivation domain at the C-terminal of STAT3α replacing seven unique amino acids. Although STAT3β was originally thought to be a dominant negative isoform of STAT3α, accumulating evidence have shown that STAT3β possesses both its unique functions and those that overlap with STAT3α in fundamental cellular processes. However, much remains unknown about STAT3 pre-mRNA alternative splicing in determining the balance between STAT3 isoforms. In this study, we identified <em>cis</em>-regulatory elements and CUGBP2/ETR-3 as a novel <em>trans</em>-acting factor that regulates STAT3 alternative splicing. Our findings demonstrate that STAT3 splicing can be modulated by CUGBP2 via association with UG-rich elements of intron 22, providing a novel insight into the mechanism of STAT3 alternative splicing. CUGBP2 would be a crucial molecule regulating the balance of STAT3 isoform expression, thus targeting CUGBP2 and its recognition sequences in intron 22 of STAT3 might impact on various biological processes regulated by STAT3 signaling pathway.</div></div>\",\"PeriodicalId\":8779,\"journal\":{\"name\":\"Biochemical and biophysical research communications\",\"volume\":\"739 \",\"pages\":\"Article 151000\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-11-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biochemical and biophysical research communications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0006291X24015365\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochemical and biophysical research communications","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0006291X24015365","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
RNA binding protein CUGBP2/ETR-3 regulates STAT3 alternative splicing
Signal transducer and activator of transcription 3 (STAT3) is a multifactorial regulator involved in many biological responses. Alternative splicing of STAT3 pre-mRNA leads to an internal 50-nucleotide deletion of exon 23 selecting an alternative 3’ acceptor site, resulting in the generation of two splicing isoforms, STAT3α and STAT3β. STAT3β lacks 55 amino acid-residue transactivation domain at the C-terminal of STAT3α replacing seven unique amino acids. Although STAT3β was originally thought to be a dominant negative isoform of STAT3α, accumulating evidence have shown that STAT3β possesses both its unique functions and those that overlap with STAT3α in fundamental cellular processes. However, much remains unknown about STAT3 pre-mRNA alternative splicing in determining the balance between STAT3 isoforms. In this study, we identified cis-regulatory elements and CUGBP2/ETR-3 as a novel trans-acting factor that regulates STAT3 alternative splicing. Our findings demonstrate that STAT3 splicing can be modulated by CUGBP2 via association with UG-rich elements of intron 22, providing a novel insight into the mechanism of STAT3 alternative splicing. CUGBP2 would be a crucial molecule regulating the balance of STAT3 isoform expression, thus targeting CUGBP2 and its recognition sequences in intron 22 of STAT3 might impact on various biological processes regulated by STAT3 signaling pathway.
期刊介绍:
Biochemical and Biophysical Research Communications is the premier international journal devoted to the very rapid dissemination of timely and significant experimental results in diverse fields of biological research. The development of the "Breakthroughs and Views" section brings the minireview format to the journal, and issues often contain collections of special interest manuscripts. BBRC is published weekly (52 issues/year).Research Areas now include: Biochemistry; biophysics; cell biology; developmental biology; immunology
; molecular biology; neurobiology; plant biology and proteomics