Zhanhao Mo, He Sui, Zhongwen Lv, Xiaoqian Huang, Guobin Li, Dinggang Shen, Lin Liu, Shu Liao
{"title":"利用多序列和卷积神经网络加速脑磁共振成像","authors":"Zhanhao Mo, He Sui, Zhongwen Lv, Xiaoqian Huang, Guobin Li, Dinggang Shen, Lin Liu, Shu Liao","doi":"10.1002/brb3.70163","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Purpose</h3>\n \n <p>Magnetic resonance imaging (MRI) refers to one of the critical image modalities for diagnosis, whereas its long acquisition time limits its application. In this study, the aim was to investigate whether deep learning–based techniques are capable of using the common information in different MRI sequences to reduce the scan time of the most time-consuming sequences while maintaining the image quality.</p>\n </section>\n \n <section>\n \n <h3> Method</h3>\n \n <p>Fully sampled T1-FLAIR, T2-FLAIR, and T2WI brain MRI raw data originated from 217 patients and 105 healthy subjects. The T1-FLAIR and T2-FLAIR sequences were subsampled using Cartesian masks based on four different acceleration factors. The fully sampled T1/T2-FLAIR images were predicted from undersampled T1/T2-FLAIR images and T2WI images through deep learning–based reconstruction. They were qualitatively assessed by two senior radiologists in accordance with the diagnosis decision and a four-point scale image quality score. Furthermore, the images were quantitatively assessed based on regional signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs). The chi-square test was performed, where <i>p</i> < 0.05 indicated a difference with statistical significance.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>The diagnosis decisions from two senior radiologists remained unchanged in accordance with the accelerated and fully sampled images. There were no significant differences in the regional SNRs and CNRs of most assessed regions (<i>p</i> > 0.05) between the accelerated and fully sampled images. Moreover, no significant difference was identified in the image quality assessed by two senior radiologists (<i>p</i> > 0.05).</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>Deep learning–based image reconstruction is capable of significantly expediting the brain MR imaging process and producing acceptable image quality without affecting diagnosis decisions.</p>\n </section>\n </div>","PeriodicalId":9081,"journal":{"name":"Brain and Behavior","volume":"14 11","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brb3.70163","citationCount":"0","resultStr":"{\"title\":\"Accelerating Brain MR Imaging With Multisequence and Convolutional Neural Networks\",\"authors\":\"Zhanhao Mo, He Sui, Zhongwen Lv, Xiaoqian Huang, Guobin Li, Dinggang Shen, Lin Liu, Shu Liao\",\"doi\":\"10.1002/brb3.70163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Purpose</h3>\\n \\n <p>Magnetic resonance imaging (MRI) refers to one of the critical image modalities for diagnosis, whereas its long acquisition time limits its application. In this study, the aim was to investigate whether deep learning–based techniques are capable of using the common information in different MRI sequences to reduce the scan time of the most time-consuming sequences while maintaining the image quality.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Method</h3>\\n \\n <p>Fully sampled T1-FLAIR, T2-FLAIR, and T2WI brain MRI raw data originated from 217 patients and 105 healthy subjects. The T1-FLAIR and T2-FLAIR sequences were subsampled using Cartesian masks based on four different acceleration factors. The fully sampled T1/T2-FLAIR images were predicted from undersampled T1/T2-FLAIR images and T2WI images through deep learning–based reconstruction. They were qualitatively assessed by two senior radiologists in accordance with the diagnosis decision and a four-point scale image quality score. Furthermore, the images were quantitatively assessed based on regional signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs). The chi-square test was performed, where <i>p</i> < 0.05 indicated a difference with statistical significance.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>The diagnosis decisions from two senior radiologists remained unchanged in accordance with the accelerated and fully sampled images. There were no significant differences in the regional SNRs and CNRs of most assessed regions (<i>p</i> > 0.05) between the accelerated and fully sampled images. Moreover, no significant difference was identified in the image quality assessed by two senior radiologists (<i>p</i> > 0.05).</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>Deep learning–based image reconstruction is capable of significantly expediting the brain MR imaging process and producing acceptable image quality without affecting diagnosis decisions.</p>\\n </section>\\n </div>\",\"PeriodicalId\":9081,\"journal\":{\"name\":\"Brain and Behavior\",\"volume\":\"14 11\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/brb3.70163\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brain and Behavior\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/brb3.70163\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brain and Behavior","FirstCategoryId":"102","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/brb3.70163","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
Accelerating Brain MR Imaging With Multisequence and Convolutional Neural Networks
Purpose
Magnetic resonance imaging (MRI) refers to one of the critical image modalities for diagnosis, whereas its long acquisition time limits its application. In this study, the aim was to investigate whether deep learning–based techniques are capable of using the common information in different MRI sequences to reduce the scan time of the most time-consuming sequences while maintaining the image quality.
Method
Fully sampled T1-FLAIR, T2-FLAIR, and T2WI brain MRI raw data originated from 217 patients and 105 healthy subjects. The T1-FLAIR and T2-FLAIR sequences were subsampled using Cartesian masks based on four different acceleration factors. The fully sampled T1/T2-FLAIR images were predicted from undersampled T1/T2-FLAIR images and T2WI images through deep learning–based reconstruction. They were qualitatively assessed by two senior radiologists in accordance with the diagnosis decision and a four-point scale image quality score. Furthermore, the images were quantitatively assessed based on regional signal-to-noise ratios (SNRs) and contrast-to-noise ratios (CNRs). The chi-square test was performed, where p < 0.05 indicated a difference with statistical significance.
Results
The diagnosis decisions from two senior radiologists remained unchanged in accordance with the accelerated and fully sampled images. There were no significant differences in the regional SNRs and CNRs of most assessed regions (p > 0.05) between the accelerated and fully sampled images. Moreover, no significant difference was identified in the image quality assessed by two senior radiologists (p > 0.05).
Conclusion
Deep learning–based image reconstruction is capable of significantly expediting the brain MR imaging process and producing acceptable image quality without affecting diagnosis decisions.
期刊介绍:
Brain and Behavior is supported by other journals published by Wiley, including a number of society-owned journals. The journals listed below support Brain and Behavior and participate in the Manuscript Transfer Program by referring articles of suitable quality and offering authors the option to have their paper, with any peer review reports, automatically transferred to Brain and Behavior.
* [Acta Psychiatrica Scandinavica](https://publons.com/journal/1366/acta-psychiatrica-scandinavica)
* [Addiction Biology](https://publons.com/journal/1523/addiction-biology)
* [Aggressive Behavior](https://publons.com/journal/3611/aggressive-behavior)
* [Brain Pathology](https://publons.com/journal/1787/brain-pathology)
* [Child: Care, Health and Development](https://publons.com/journal/6111/child-care-health-and-development)
* [Criminal Behaviour and Mental Health](https://publons.com/journal/3839/criminal-behaviour-and-mental-health)
* [Depression and Anxiety](https://publons.com/journal/1528/depression-and-anxiety)
* Developmental Neurobiology
* [Developmental Science](https://publons.com/journal/1069/developmental-science)
* [European Journal of Neuroscience](https://publons.com/journal/1441/european-journal-of-neuroscience)
* [Genes, Brain and Behavior](https://publons.com/journal/1635/genes-brain-and-behavior)
* [GLIA](https://publons.com/journal/1287/glia)
* [Hippocampus](https://publons.com/journal/1056/hippocampus)
* [Human Brain Mapping](https://publons.com/journal/500/human-brain-mapping)
* [Journal for the Theory of Social Behaviour](https://publons.com/journal/7330/journal-for-the-theory-of-social-behaviour)
* [Journal of Comparative Neurology](https://publons.com/journal/1306/journal-of-comparative-neurology)
* [Journal of Neuroimaging](https://publons.com/journal/6379/journal-of-neuroimaging)
* [Journal of Neuroscience Research](https://publons.com/journal/2778/journal-of-neuroscience-research)
* [Journal of Organizational Behavior](https://publons.com/journal/1123/journal-of-organizational-behavior)
* [Journal of the Peripheral Nervous System](https://publons.com/journal/3929/journal-of-the-peripheral-nervous-system)
* [Muscle & Nerve](https://publons.com/journal/4448/muscle-and-nerve)
* [Neural Pathology and Applied Neurobiology](https://publons.com/journal/2401/neuropathology-and-applied-neurobiology)