具有增强电磁能量收集功能的 MXene 杂化聚合物,用于敏化微波驱动和自供电运动传感。

IF 26.6 1区 材料科学 Q1 Engineering
Yu-Ze Wang, Yu-Chang Wang, Ting-Ting Liu, Quan-Liang Zhao, Chen-Sha Li, Mao-Sheng Cao
{"title":"具有增强电磁能量收集功能的 MXene 杂化聚合物,用于敏化微波驱动和自供电运动传感。","authors":"Yu-Ze Wang,&nbsp;Yu-Chang Wang,&nbsp;Ting-Ting Liu,&nbsp;Quan-Liang Zhao,&nbsp;Chen-Sha Li,&nbsp;Mao-Sheng Cao","doi":"10.1007/s40820-024-01578-z","DOIUrl":null,"url":null,"abstract":"<div><h2>Highlights</h2><div>\n \n <ul>\n <li>\n <p>An alternative electromagnetic attenuation pathway is proposed in the MXene-polymer hybrid structure, distinct from conduction loss, for generalizing the results to a wider range of electromagnetic-thermal driven soft materials and devices.\n</p>\n </li>\n <li>\n <p>By efficiently harvesting and converting electromagnetic energy, the response time of the hybrid polymer to microwave exhibits 87% reduction with merely 0.15 wt% MXene.\n</p>\n </li>\n <li>\n <p>A new mode of self-powered motion sensing based on deformation-driven piezoelectric effect is developed, enhancing the material’s intelligence.</p>\n </li>\n </ul>\n </div></div>","PeriodicalId":714,"journal":{"name":"Nano-Micro Letters","volume":"17 1","pages":""},"PeriodicalIF":26.6000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s40820-024-01578-z.pdf","citationCount":"0","resultStr":"{\"title\":\"MXene Hybridized Polymer with Enhanced Electromagnetic Energy Harvest for Sensitized Microwave Actuation and Self-Powered Motion Sensing\",\"authors\":\"Yu-Ze Wang,&nbsp;Yu-Chang Wang,&nbsp;Ting-Ting Liu,&nbsp;Quan-Liang Zhao,&nbsp;Chen-Sha Li,&nbsp;Mao-Sheng Cao\",\"doi\":\"10.1007/s40820-024-01578-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><h2>Highlights</h2><div>\\n \\n <ul>\\n <li>\\n <p>An alternative electromagnetic attenuation pathway is proposed in the MXene-polymer hybrid structure, distinct from conduction loss, for generalizing the results to a wider range of electromagnetic-thermal driven soft materials and devices.\\n</p>\\n </li>\\n <li>\\n <p>By efficiently harvesting and converting electromagnetic energy, the response time of the hybrid polymer to microwave exhibits 87% reduction with merely 0.15 wt% MXene.\\n</p>\\n </li>\\n <li>\\n <p>A new mode of self-powered motion sensing based on deformation-driven piezoelectric effect is developed, enhancing the material’s intelligence.</p>\\n </li>\\n </ul>\\n </div></div>\",\"PeriodicalId\":714,\"journal\":{\"name\":\"Nano-Micro Letters\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":26.6000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s40820-024-01578-z.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nano-Micro Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s40820-024-01578-z\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano-Micro Letters","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s40820-024-01578-z","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

聚合物微波致动器结合了类似组织的柔软性和可编程的微波响应形变,在移动智能设备和仿生软机器人领域大有可为。然而,它们的应用受到电磁灵敏度限制和复杂传感耦合的挑战。在本研究中,通过将液晶聚合物与 Ti3C2Tx(MXene)杂化,制造出了一种敏化聚合物微波致动器。与最初的同类产品相比,杂化聚合物表现出独特的空间电荷极化和界面极化,使介质损耗因子显著提高了 230%,电磁能量收集的表观效率提高了 830%。敏化微波致动表现为响应时间缩短了近 10 秒,仅为初始形状记忆聚合物的 13%。此外,MXene 的超低含量(高达 0.15 wt%)也有利于保持混合聚合物的致动潜力。我们开发了一种创新的自供电传感原型,它结合了驱动聚合物和压电聚合物,可在致动过程中产生实时电势反馈(开路电势约为 3 mV)。在 MXene 聚合物杂化结构中观察到的极化主导能量转换机制为开发高效电磁耗散结构提供了一种新方法,并显示出推动聚合物电磁智能设备发展的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
MXene Hybridized Polymer with Enhanced Electromagnetic Energy Harvest for Sensitized Microwave Actuation and Self-Powered Motion Sensing

Highlights

  • An alternative electromagnetic attenuation pathway is proposed in the MXene-polymer hybrid structure, distinct from conduction loss, for generalizing the results to a wider range of electromagnetic-thermal driven soft materials and devices.

  • By efficiently harvesting and converting electromagnetic energy, the response time of the hybrid polymer to microwave exhibits 87% reduction with merely 0.15 wt% MXene.

  • A new mode of self-powered motion sensing based on deformation-driven piezoelectric effect is developed, enhancing the material’s intelligence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nano-Micro Letters
Nano-Micro Letters NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
32.60
自引率
4.90%
发文量
981
审稿时长
1.1 months
期刊介绍: Nano-Micro Letters is a peer-reviewed, international, interdisciplinary, and open-access journal published under the SpringerOpen brand. Nano-Micro Letters focuses on the science, experiments, engineering, technologies, and applications of nano- or microscale structures and systems in various fields such as physics, chemistry, biology, material science, and pharmacy.It also explores the expanding interfaces between these fields. Nano-Micro Letters particularly emphasizes the bottom-up approach in the length scale from nano to micro. This approach is crucial for achieving industrial applications in nanotechnology, as it involves the assembly, modification, and control of nanostructures on a microscale.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信