Reza Taheri-Ledari, Mostafa Ghafori-Gorab, Sorour Ramezanpour, Mohammad Mahdavi, Maliheh Safavi, Ali Reza Akbarzadeh, Ali Maleki
{"title":"用于乳腺癌和肺癌细胞多柔比星固相给药的 MIL-101 磁性纳米载体。","authors":"Reza Taheri-Ledari, Mostafa Ghafori-Gorab, Sorour Ramezanpour, Mohammad Mahdavi, Maliheh Safavi, Ali Reza Akbarzadeh, Ali Maleki","doi":"10.1016/j.ijbiomac.2024.137615","DOIUrl":null,"url":null,"abstract":"<p><p>An efficient strategy for passive delivery of doxorubicin (DOX) to the breast (MDA-MB-231) and lung (A-549) cancer cells is presented and compared with MCF-10A normal breast cells. Two versions of a peptide structure (linear and cyclic) have been designed and assessed. The molecular dynamic simulations in Material Studio2017 exhibited a higher adsorption capacity for L<sup>2</sup> (cyclic version) compared with the adsorption capacity of L<sup>1</sup> (linear version) on the PG surface by electrostatic interactions between guanidine of arginine and -OH of PG. The prepared final product based on iron oxide nanoparticles and MIL-101(Fe) (formulated as DOX@Fe<sub>3</sub>O<sub>4</sub>/MIL-101-(C,L)C[RW]<sub>3</sub>) is characterized and the drug content has been estimated. The release profiles revealed an ultra-fast stimulus-sensitive model in acidic media, which corroborates a pH-triggered release. The in vitro assessments disclosed that aggregation of nanocargo around the cancer cells and resulted toxicity are more than the neat DOX in the same dosage as DOX@Fe<sub>3</sub>O<sub>4</sub>/MIL-101-CC[RW]<sub>3</sub>. The obtained distinguished features lie in ability to utilize a biocompatible nanocargo structure to release an appropriate dose of DOX in a controlled manner in the cancer cell environment. Moreover, the functionalization of MIL-101 using cyclic and linear peptides and their comparison is one of the important features of this project.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137615"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"MIL-101 magnetic nanocarrier for solid-phase delivery of doxorubicin to breast and lung cancer cells.\",\"authors\":\"Reza Taheri-Ledari, Mostafa Ghafori-Gorab, Sorour Ramezanpour, Mohammad Mahdavi, Maliheh Safavi, Ali Reza Akbarzadeh, Ali Maleki\",\"doi\":\"10.1016/j.ijbiomac.2024.137615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>An efficient strategy for passive delivery of doxorubicin (DOX) to the breast (MDA-MB-231) and lung (A-549) cancer cells is presented and compared with MCF-10A normal breast cells. Two versions of a peptide structure (linear and cyclic) have been designed and assessed. The molecular dynamic simulations in Material Studio2017 exhibited a higher adsorption capacity for L<sup>2</sup> (cyclic version) compared with the adsorption capacity of L<sup>1</sup> (linear version) on the PG surface by electrostatic interactions between guanidine of arginine and -OH of PG. The prepared final product based on iron oxide nanoparticles and MIL-101(Fe) (formulated as DOX@Fe<sub>3</sub>O<sub>4</sub>/MIL-101-(C,L)C[RW]<sub>3</sub>) is characterized and the drug content has been estimated. The release profiles revealed an ultra-fast stimulus-sensitive model in acidic media, which corroborates a pH-triggered release. The in vitro assessments disclosed that aggregation of nanocargo around the cancer cells and resulted toxicity are more than the neat DOX in the same dosage as DOX@Fe<sub>3</sub>O<sub>4</sub>/MIL-101-CC[RW]<sub>3</sub>. The obtained distinguished features lie in ability to utilize a biocompatible nanocargo structure to release an appropriate dose of DOX in a controlled manner in the cancer cell environment. Moreover, the functionalization of MIL-101 using cyclic and linear peptides and their comparison is one of the important features of this project.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\" \",\"pages\":\"137615\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2024.137615\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137615","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
MIL-101 magnetic nanocarrier for solid-phase delivery of doxorubicin to breast and lung cancer cells.
An efficient strategy for passive delivery of doxorubicin (DOX) to the breast (MDA-MB-231) and lung (A-549) cancer cells is presented and compared with MCF-10A normal breast cells. Two versions of a peptide structure (linear and cyclic) have been designed and assessed. The molecular dynamic simulations in Material Studio2017 exhibited a higher adsorption capacity for L2 (cyclic version) compared with the adsorption capacity of L1 (linear version) on the PG surface by electrostatic interactions between guanidine of arginine and -OH of PG. The prepared final product based on iron oxide nanoparticles and MIL-101(Fe) (formulated as DOX@Fe3O4/MIL-101-(C,L)C[RW]3) is characterized and the drug content has been estimated. The release profiles revealed an ultra-fast stimulus-sensitive model in acidic media, which corroborates a pH-triggered release. The in vitro assessments disclosed that aggregation of nanocargo around the cancer cells and resulted toxicity are more than the neat DOX in the same dosage as DOX@Fe3O4/MIL-101-CC[RW]3. The obtained distinguished features lie in ability to utilize a biocompatible nanocargo structure to release an appropriate dose of DOX in a controlled manner in the cancer cell environment. Moreover, the functionalization of MIL-101 using cyclic and linear peptides and their comparison is one of the important features of this project.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.