Pei Chen, Ee Sang, Huanhuan Chen, Qi Meng, Huiping Liu
{"title":"不同提取温度对蒲公英叶多糖结构特征和抗氧化活性的影响","authors":"Pei Chen, Ee Sang, Huanhuan Chen, Qi Meng, Huiping Liu","doi":"10.1016/j.ijbiomac.2024.137726","DOIUrl":null,"url":null,"abstract":"<p><p>Dandelion polysaccharides contribute to a variety of biological activities. This study evaluated the effect of different extraction temperatures (4 °C and 80 °C) on the structural characteristics and antioxidant activity of dandelion leaf polysaccharides (DLP). The findings demonstrated that the extraction efficiency improved at the higher temperature, while molecular weight exist a trend of degradation with increasing extraction temperature. Ion chromatography (IC) analysis indicated that the polysaccharides DLP4 and DLP80 were structurally complex heteropolysaccharides mainly composed of galactose, arabinose, glucose and mannose, with galactose and arabinose dominating. FT-IR and methylation analysis revealed that DLP4 and DLP80 had similar chemical structures and branches. DLP4 contained a higher amount of 6-Galactose. Microstructure analysis showed that heat treatment caused conformational changes in DLP4 and DLP80. Both had excellent free radical scavenging ability including DPPH·, ABTS<sup>·+</sup>, OH· and reducing power. The Reactive Oxygen Species assay indicated that the protective effect of DLP4 against H<sub>2</sub>O<sub>2</sub>-induced oxidative damage in vitro was stronger than that of DLP80. Superoxide dismutase (SOD) and malondialdehyde (MDA) measurements also confirmed that the antioxidant effect of DLP4 was more prominent. Overall, low temperature extracted DLP can be used as an antioxidant in the areas of food, medicine and biomaterials.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137726"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Effects of different extraction temperatures on the structural characteristics and antioxidant activity of polysaccharides from dandelion leaves.\",\"authors\":\"Pei Chen, Ee Sang, Huanhuan Chen, Qi Meng, Huiping Liu\",\"doi\":\"10.1016/j.ijbiomac.2024.137726\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Dandelion polysaccharides contribute to a variety of biological activities. This study evaluated the effect of different extraction temperatures (4 °C and 80 °C) on the structural characteristics and antioxidant activity of dandelion leaf polysaccharides (DLP). The findings demonstrated that the extraction efficiency improved at the higher temperature, while molecular weight exist a trend of degradation with increasing extraction temperature. Ion chromatography (IC) analysis indicated that the polysaccharides DLP4 and DLP80 were structurally complex heteropolysaccharides mainly composed of galactose, arabinose, glucose and mannose, with galactose and arabinose dominating. FT-IR and methylation analysis revealed that DLP4 and DLP80 had similar chemical structures and branches. DLP4 contained a higher amount of 6-Galactose. Microstructure analysis showed that heat treatment caused conformational changes in DLP4 and DLP80. Both had excellent free radical scavenging ability including DPPH·, ABTS<sup>·+</sup>, OH· and reducing power. The Reactive Oxygen Species assay indicated that the protective effect of DLP4 against H<sub>2</sub>O<sub>2</sub>-induced oxidative damage in vitro was stronger than that of DLP80. Superoxide dismutase (SOD) and malondialdehyde (MDA) measurements also confirmed that the antioxidant effect of DLP4 was more prominent. Overall, low temperature extracted DLP can be used as an antioxidant in the areas of food, medicine and biomaterials.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\" \",\"pages\":\"137726\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2024.137726\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137726","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Effects of different extraction temperatures on the structural characteristics and antioxidant activity of polysaccharides from dandelion leaves.
Dandelion polysaccharides contribute to a variety of biological activities. This study evaluated the effect of different extraction temperatures (4 °C and 80 °C) on the structural characteristics and antioxidant activity of dandelion leaf polysaccharides (DLP). The findings demonstrated that the extraction efficiency improved at the higher temperature, while molecular weight exist a trend of degradation with increasing extraction temperature. Ion chromatography (IC) analysis indicated that the polysaccharides DLP4 and DLP80 were structurally complex heteropolysaccharides mainly composed of galactose, arabinose, glucose and mannose, with galactose and arabinose dominating. FT-IR and methylation analysis revealed that DLP4 and DLP80 had similar chemical structures and branches. DLP4 contained a higher amount of 6-Galactose. Microstructure analysis showed that heat treatment caused conformational changes in DLP4 and DLP80. Both had excellent free radical scavenging ability including DPPH·, ABTS·+, OH· and reducing power. The Reactive Oxygen Species assay indicated that the protective effect of DLP4 against H2O2-induced oxidative damage in vitro was stronger than that of DLP80. Superoxide dismutase (SOD) and malondialdehyde (MDA) measurements also confirmed that the antioxidant effect of DLP4 was more prominent. Overall, low temperature extracted DLP can be used as an antioxidant in the areas of food, medicine and biomaterials.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.