具有 pH 值调节防污特性的带电共聚物双亲化合物的共聚。

IF 3.9 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY
Langmuir Pub Date : 2024-12-03 Epub Date: 2024-11-18 DOI:10.1021/acs.langmuir.4c03403
Arnab Banerjee, Arya K, Maria Davis, Biswajit Saha, Priyadarsi De
{"title":"具有 pH 值调节防污特性的带电共聚物双亲化合物的共聚。","authors":"Arnab Banerjee, Arya K, Maria Davis, Biswajit Saha, Priyadarsi De","doi":"10.1021/acs.langmuir.4c03403","DOIUrl":null,"url":null,"abstract":"<p><p>Understanding the formation of highly ordered structures through self-assembly is crucial for developing various biologically relevant systems. A significant expansion in the development of self-assembly chemistry features stable coassembly formation using a mixture of two oppositely charged polymers. This study provides insightful findings on the coassembly of hydrophobic coumarin-integrated cationic (<b>P1-P3</b>) and anionic (<b>P1'-P3'</b>) copolymers toward the formation of vesicles in aqueous medium at pH 7.4, with a hydrodynamic diameter (<i>D</i><sub>h</sub>) of 160 ± 10 nm and electrically neutral zwitterionic surfaces, confirmed by dynamic light scattering. Upon varying the solution pH, an intriguing charge switchable behavior (+ve → 0 → -ve) and a drastic morphological transition to spherical aggregates of the vesicles were noticed. At pH 7.4, these coassembled vesicles possess a neutral surface charge, empowering them to resist nonspecific protein (pepsin and lysozyme) adsorption via electrostatic repulsion, as evidenced by size evolution and protein binding measurements. Additionally, the bilayer membrane allows for the encapsulation of hydrophilic and hydrophobic guest molecules and their sustained release in the presence of 10 mM esterase; thus, this study demonstrates potential applications of coassembly to serve as a drug delivery vehicle.</p>","PeriodicalId":50,"journal":{"name":"Langmuir","volume":" ","pages":"25568-25579"},"PeriodicalIF":3.9000,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Coassembly of Charged Copolymer Amphiphiles Featuring pH-Regulated Antifouling Properties.\",\"authors\":\"Arnab Banerjee, Arya K, Maria Davis, Biswajit Saha, Priyadarsi De\",\"doi\":\"10.1021/acs.langmuir.4c03403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Understanding the formation of highly ordered structures through self-assembly is crucial for developing various biologically relevant systems. A significant expansion in the development of self-assembly chemistry features stable coassembly formation using a mixture of two oppositely charged polymers. This study provides insightful findings on the coassembly of hydrophobic coumarin-integrated cationic (<b>P1-P3</b>) and anionic (<b>P1'-P3'</b>) copolymers toward the formation of vesicles in aqueous medium at pH 7.4, with a hydrodynamic diameter (<i>D</i><sub>h</sub>) of 160 ± 10 nm and electrically neutral zwitterionic surfaces, confirmed by dynamic light scattering. Upon varying the solution pH, an intriguing charge switchable behavior (+ve → 0 → -ve) and a drastic morphological transition to spherical aggregates of the vesicles were noticed. At pH 7.4, these coassembled vesicles possess a neutral surface charge, empowering them to resist nonspecific protein (pepsin and lysozyme) adsorption via electrostatic repulsion, as evidenced by size evolution and protein binding measurements. Additionally, the bilayer membrane allows for the encapsulation of hydrophilic and hydrophobic guest molecules and their sustained release in the presence of 10 mM esterase; thus, this study demonstrates potential applications of coassembly to serve as a drug delivery vehicle.</p>\",\"PeriodicalId\":50,\"journal\":{\"name\":\"Langmuir\",\"volume\":\" \",\"pages\":\"25568-25579\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-12-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Langmuir\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.langmuir.4c03403\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/18 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Langmuir","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.langmuir.4c03403","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/18 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

了解通过自组装形成高度有序的结构对于开发各种生物相关系统至关重要。自组装化学发展的一个重大进展是使用两种带相反电荷的聚合物混合物形成稳定的共组装。本研究深入探讨了疏水性香豆素整合阳离子(P1-P3)和阴离子(P1'-P3')共聚物在 pH 值为 7.4 的水介质中形成囊泡的共组装过程,经动态光散射证实,囊泡的水动力直径(Dh)为 160 ± 10 nm,表面为电中性的齐聚物。在改变溶液 pH 值时,发现了一种有趣的电荷切换行为(+ve → 0 → -ve),以及向球形聚集体的急剧形态转变。在 pH 值为 7.4 时,这些共聚囊泡表面带中性电荷,使其能够通过静电斥力抵制非特异性蛋白质(胃蛋白酶和溶菌酶)的吸附,这一点可以通过大小演变和蛋白质结合测量得到证明。此外,双层膜还能封装亲水性和疏水性客体分子,并在 10 mM 酯酶存在下持续释放这些分子;因此,这项研究展示了共组装作为药物输送载体的潜在应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Coassembly of Charged Copolymer Amphiphiles Featuring pH-Regulated Antifouling Properties.

Coassembly of Charged Copolymer Amphiphiles Featuring pH-Regulated Antifouling Properties.

Understanding the formation of highly ordered structures through self-assembly is crucial for developing various biologically relevant systems. A significant expansion in the development of self-assembly chemistry features stable coassembly formation using a mixture of two oppositely charged polymers. This study provides insightful findings on the coassembly of hydrophobic coumarin-integrated cationic (P1-P3) and anionic (P1'-P3') copolymers toward the formation of vesicles in aqueous medium at pH 7.4, with a hydrodynamic diameter (Dh) of 160 ± 10 nm and electrically neutral zwitterionic surfaces, confirmed by dynamic light scattering. Upon varying the solution pH, an intriguing charge switchable behavior (+ve → 0 → -ve) and a drastic morphological transition to spherical aggregates of the vesicles were noticed. At pH 7.4, these coassembled vesicles possess a neutral surface charge, empowering them to resist nonspecific protein (pepsin and lysozyme) adsorption via electrostatic repulsion, as evidenced by size evolution and protein binding measurements. Additionally, the bilayer membrane allows for the encapsulation of hydrophilic and hydrophobic guest molecules and their sustained release in the presence of 10 mM esterase; thus, this study demonstrates potential applications of coassembly to serve as a drug delivery vehicle.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Langmuir
Langmuir 化学-材料科学:综合
CiteScore
6.50
自引率
10.30%
发文量
1464
审稿时长
2.1 months
期刊介绍: Langmuir is an interdisciplinary journal publishing articles in the following subject categories: Colloids: surfactants and self-assembly, dispersions, emulsions, foams Interfaces: adsorption, reactions, films, forces Biological Interfaces: biocolloids, biomolecular and biomimetic materials Materials: nano- and mesostructured materials, polymers, gels, liquid crystals Electrochemistry: interfacial charge transfer, charge transport, electrocatalysis, electrokinetic phenomena, bioelectrochemistry Devices and Applications: sensors, fluidics, patterning, catalysis, photonic crystals However, when high-impact, original work is submitted that does not fit within the above categories, decisions to accept or decline such papers will be based on one criteria: What Would Irving Do? Langmuir ranks #2 in citations out of 136 journals in the category of Physical Chemistry with 113,157 total citations. The journal received an Impact Factor of 4.384*. This journal is also indexed in the categories of Materials Science (ranked #1) and Multidisciplinary Chemistry (ranked #5).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信