Jingfei Wang , Meiyi Wu , Ruiting Zhang , Chongruihan Li , Chaoqun Li , Shuangling Zhong , Yan Gao , Qingye Meng , Xuejun Cui
{"title":"基于羧甲基纤维素的聚集诱导发射抗菌材料的多功能应用。","authors":"Jingfei Wang , Meiyi Wu , Ruiting Zhang , Chongruihan Li , Chaoqun Li , Shuangling Zhong , Yan Gao , Qingye Meng , Xuejun Cui","doi":"10.1016/j.ijbiomac.2024.137740","DOIUrl":null,"url":null,"abstract":"<div><div>Polysaccharides are ubiquitous in nature, typically harmless, and highly compatible with various tissues in biomedical contexts. These properties make them attractive for use in multifunctional materials. In this study, the aggregation-induced emission (AIE) antibacterial material (PLOCMC) was successfully synthesized by carboxymethylcellulose (CMC) and ε-Poly-Lysine (ε-PL). PLOCMC exhibits not only the AIE property but also a room temperature phosphorescent (RTP) phenomenon. This dual emission behavior enhances its potential applications in chemical sensing and anti-counterfeiting. Notably, PLOCMC shows low cytotoxicity and exhibits antibacterial activity against typical Gram-positive and Gram-negative bacteria, making it a potent agent against a variety of bacterial strains. Additionally, PLOCMC demonstrates specific responsiveness to Fe<sup>3+</sup> ions and nitrite, indicating its potential utility in food safety and monitoring applications.</div></div>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":"283 ","pages":"Article 137740"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carboxymethylcellulose-based aggregation-induced emission antibacterial material for multifunctional applications\",\"authors\":\"Jingfei Wang , Meiyi Wu , Ruiting Zhang , Chongruihan Li , Chaoqun Li , Shuangling Zhong , Yan Gao , Qingye Meng , Xuejun Cui\",\"doi\":\"10.1016/j.ijbiomac.2024.137740\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Polysaccharides are ubiquitous in nature, typically harmless, and highly compatible with various tissues in biomedical contexts. These properties make them attractive for use in multifunctional materials. In this study, the aggregation-induced emission (AIE) antibacterial material (PLOCMC) was successfully synthesized by carboxymethylcellulose (CMC) and ε-Poly-Lysine (ε-PL). PLOCMC exhibits not only the AIE property but also a room temperature phosphorescent (RTP) phenomenon. This dual emission behavior enhances its potential applications in chemical sensing and anti-counterfeiting. Notably, PLOCMC shows low cytotoxicity and exhibits antibacterial activity against typical Gram-positive and Gram-negative bacteria, making it a potent agent against a variety of bacterial strains. Additionally, PLOCMC demonstrates specific responsiveness to Fe<sup>3+</sup> ions and nitrite, indicating its potential utility in food safety and monitoring applications.</div></div>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\"283 \",\"pages\":\"Article 137740\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141813024085507\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141813024085507","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Carboxymethylcellulose-based aggregation-induced emission antibacterial material for multifunctional applications
Polysaccharides are ubiquitous in nature, typically harmless, and highly compatible with various tissues in biomedical contexts. These properties make them attractive for use in multifunctional materials. In this study, the aggregation-induced emission (AIE) antibacterial material (PLOCMC) was successfully synthesized by carboxymethylcellulose (CMC) and ε-Poly-Lysine (ε-PL). PLOCMC exhibits not only the AIE property but also a room temperature phosphorescent (RTP) phenomenon. This dual emission behavior enhances its potential applications in chemical sensing and anti-counterfeiting. Notably, PLOCMC shows low cytotoxicity and exhibits antibacterial activity against typical Gram-positive and Gram-negative bacteria, making it a potent agent against a variety of bacterial strains. Additionally, PLOCMC demonstrates specific responsiveness to Fe3+ ions and nitrite, indicating its potential utility in food safety and monitoring applications.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.