Faruk Okur, Huanyu Zhang, Julian F Baumgärtner, Jaka Sivavec, Matthias Klimpel, Gregor Paul Wasser, Romain Dubey, Lars P H Jeurgens, Dmitry Chernyshov, Wouter van Beek, Kostiantyn V Kravchyk, Maksym V Kovalenko
{"title":"用于全固态锂电池的致密 Li7La3Zr2O12 膜的超快烧结。","authors":"Faruk Okur, Huanyu Zhang, Julian F Baumgärtner, Jaka Sivavec, Matthias Klimpel, Gregor Paul Wasser, Romain Dubey, Lars P H Jeurgens, Dmitry Chernyshov, Wouter van Beek, Kostiantyn V Kravchyk, Maksym V Kovalenko","doi":"10.1002/advs.202412370","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrafast sintering (UFS) is a compelling approach for fabricating Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) solid-state electrolytes (SSEs), paving the way for advancing and commercializing Li-garnet solid-state batteries. Although this method is commonly applied to the sintering of LLZO ceramics, its use for producing dense, phase-pure LLZO SSEs has thus far been primarily limited to millimeter-thick pellets, which are unsuitable for commercial solid-state batteries. This study presents ultrafast sintering as a highly effective approach for fabricating self-standing, dense, 45 µm-thick LLZO membranes. The chemical and structural evolution of LLZO membranes during the UFS process is characterized through in situ synchrotron X-ray diffraction and thermogravimetric analysis-mass spectrometry, complemented by an in-depth investigation of surface chemistry using X-ray photoelectron spectroscopy. The membranes in Li/LLZO/Li symmetrical cell configuration exhibit a high critical current density of up to 12.5 mA cm<sup>-2</sup> and maintain superior cycling stability for 250 cycles at a current density of 1 mA cm<sup>-2</sup>, with an areal capacity limit of 1 mAh cm<sup>-2</sup>. The electrochemical performance of LLZO membranes is also assessed in full cell configuration using a pyrochlore-type iron (III) hydroxy fluoride cathode.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2412370"},"PeriodicalIF":14.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast Sintering of Dense Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> Membranes for Li Metal All-Solid-State Batteries.\",\"authors\":\"Faruk Okur, Huanyu Zhang, Julian F Baumgärtner, Jaka Sivavec, Matthias Klimpel, Gregor Paul Wasser, Romain Dubey, Lars P H Jeurgens, Dmitry Chernyshov, Wouter van Beek, Kostiantyn V Kravchyk, Maksym V Kovalenko\",\"doi\":\"10.1002/advs.202412370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ultrafast sintering (UFS) is a compelling approach for fabricating Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) solid-state electrolytes (SSEs), paving the way for advancing and commercializing Li-garnet solid-state batteries. Although this method is commonly applied to the sintering of LLZO ceramics, its use for producing dense, phase-pure LLZO SSEs has thus far been primarily limited to millimeter-thick pellets, which are unsuitable for commercial solid-state batteries. This study presents ultrafast sintering as a highly effective approach for fabricating self-standing, dense, 45 µm-thick LLZO membranes. The chemical and structural evolution of LLZO membranes during the UFS process is characterized through in situ synchrotron X-ray diffraction and thermogravimetric analysis-mass spectrometry, complemented by an in-depth investigation of surface chemistry using X-ray photoelectron spectroscopy. The membranes in Li/LLZO/Li symmetrical cell configuration exhibit a high critical current density of up to 12.5 mA cm<sup>-2</sup> and maintain superior cycling stability for 250 cycles at a current density of 1 mA cm<sup>-2</sup>, with an areal capacity limit of 1 mAh cm<sup>-2</sup>. The electrochemical performance of LLZO membranes is also assessed in full cell configuration using a pyrochlore-type iron (III) hydroxy fluoride cathode.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e2412370\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202412370\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202412370","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
超快烧结(UFS)是制造 Li7La3Zr2O12(LLZO)固态电解质(SSE)的一种引人注目的方法,为锂石榴石固态电池的发展和商业化铺平了道路。虽然这种方法通常用于烧结 LLZO 陶瓷,但迄今为止,用于生产致密、相纯的 LLZO 固态电解质的方法主要局限于毫米厚的颗粒,而这种颗粒不适合用于商用固态电池。本研究提出超快烧结法是一种高效的方法,可用于制造自立、致密、45 微米厚的 LLZO 膜。在超快烧结过程中,LLZO 膜的化学和结构演变是通过原位同步辐射 X 射线衍射和热重分析-质谱法表征的,并辅以 X 射线光电子能谱对表面化学的深入研究。锂/LLZO/锂对称电池配置中的膜表现出高达 12.5 mA cm-2 的临界电流密度,并且在 1 mA cm-2 电流密度下循环 250 次仍能保持卓越的循环稳定性,极限容量为 1 mAh cm-2。此外,还使用焦绿宝石型羟基氟化铁(III)阴极评估了 LLZO 膜在全电池配置中的电化学性能。
Ultrafast Sintering of Dense Li7La3Zr2O12 Membranes for Li Metal All-Solid-State Batteries.
Ultrafast sintering (UFS) is a compelling approach for fabricating Li7La3Zr2O12 (LLZO) solid-state electrolytes (SSEs), paving the way for advancing and commercializing Li-garnet solid-state batteries. Although this method is commonly applied to the sintering of LLZO ceramics, its use for producing dense, phase-pure LLZO SSEs has thus far been primarily limited to millimeter-thick pellets, which are unsuitable for commercial solid-state batteries. This study presents ultrafast sintering as a highly effective approach for fabricating self-standing, dense, 45 µm-thick LLZO membranes. The chemical and structural evolution of LLZO membranes during the UFS process is characterized through in situ synchrotron X-ray diffraction and thermogravimetric analysis-mass spectrometry, complemented by an in-depth investigation of surface chemistry using X-ray photoelectron spectroscopy. The membranes in Li/LLZO/Li symmetrical cell configuration exhibit a high critical current density of up to 12.5 mA cm-2 and maintain superior cycling stability for 250 cycles at a current density of 1 mA cm-2, with an areal capacity limit of 1 mAh cm-2. The electrochemical performance of LLZO membranes is also assessed in full cell configuration using a pyrochlore-type iron (III) hydroxy fluoride cathode.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.