用于全固态锂电池的致密 Li7La3Zr2O12 膜的超快烧结。

IF 14.3 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Faruk Okur, Huanyu Zhang, Julian F Baumgärtner, Jaka Sivavec, Matthias Klimpel, Gregor Paul Wasser, Romain Dubey, Lars P H Jeurgens, Dmitry Chernyshov, Wouter van Beek, Kostiantyn V Kravchyk, Maksym V Kovalenko
{"title":"用于全固态锂电池的致密 Li7La3Zr2O12 膜的超快烧结。","authors":"Faruk Okur, Huanyu Zhang, Julian F Baumgärtner, Jaka Sivavec, Matthias Klimpel, Gregor Paul Wasser, Romain Dubey, Lars P H Jeurgens, Dmitry Chernyshov, Wouter van Beek, Kostiantyn V Kravchyk, Maksym V Kovalenko","doi":"10.1002/advs.202412370","DOIUrl":null,"url":null,"abstract":"<p><p>Ultrafast sintering (UFS) is a compelling approach for fabricating Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) solid-state electrolytes (SSEs), paving the way for advancing and commercializing Li-garnet solid-state batteries. Although this method is commonly applied to the sintering of LLZO ceramics, its use for producing dense, phase-pure LLZO SSEs has thus far been primarily limited to millimeter-thick pellets, which are unsuitable for commercial solid-state batteries. This study presents ultrafast sintering as a highly effective approach for fabricating self-standing, dense, 45 µm-thick LLZO membranes. The chemical and structural evolution of LLZO membranes during the UFS process is characterized through in situ synchrotron X-ray diffraction and thermogravimetric analysis-mass spectrometry, complemented by an in-depth investigation of surface chemistry using X-ray photoelectron spectroscopy. The membranes in Li/LLZO/Li symmetrical cell configuration exhibit a high critical current density of up to 12.5 mA cm<sup>-2</sup> and maintain superior cycling stability for 250 cycles at a current density of 1 mA cm<sup>-2</sup>, with an areal capacity limit of 1 mAh cm<sup>-2</sup>. The electrochemical performance of LLZO membranes is also assessed in full cell configuration using a pyrochlore-type iron (III) hydroxy fluoride cathode.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2412370"},"PeriodicalIF":14.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ultrafast Sintering of Dense Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> Membranes for Li Metal All-Solid-State Batteries.\",\"authors\":\"Faruk Okur, Huanyu Zhang, Julian F Baumgärtner, Jaka Sivavec, Matthias Klimpel, Gregor Paul Wasser, Romain Dubey, Lars P H Jeurgens, Dmitry Chernyshov, Wouter van Beek, Kostiantyn V Kravchyk, Maksym V Kovalenko\",\"doi\":\"10.1002/advs.202412370\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ultrafast sintering (UFS) is a compelling approach for fabricating Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12</sub> (LLZO) solid-state electrolytes (SSEs), paving the way for advancing and commercializing Li-garnet solid-state batteries. Although this method is commonly applied to the sintering of LLZO ceramics, its use for producing dense, phase-pure LLZO SSEs has thus far been primarily limited to millimeter-thick pellets, which are unsuitable for commercial solid-state batteries. This study presents ultrafast sintering as a highly effective approach for fabricating self-standing, dense, 45 µm-thick LLZO membranes. The chemical and structural evolution of LLZO membranes during the UFS process is characterized through in situ synchrotron X-ray diffraction and thermogravimetric analysis-mass spectrometry, complemented by an in-depth investigation of surface chemistry using X-ray photoelectron spectroscopy. The membranes in Li/LLZO/Li symmetrical cell configuration exhibit a high critical current density of up to 12.5 mA cm<sup>-2</sup> and maintain superior cycling stability for 250 cycles at a current density of 1 mA cm<sup>-2</sup>, with an areal capacity limit of 1 mAh cm<sup>-2</sup>. The electrochemical performance of LLZO membranes is also assessed in full cell configuration using a pyrochlore-type iron (III) hydroxy fluoride cathode.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e2412370\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202412370\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202412370","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

超快烧结(UFS)是制造 Li7La3Zr2O12(LLZO)固态电解质(SSE)的一种引人注目的方法,为锂石榴石固态电池的发展和商业化铺平了道路。虽然这种方法通常用于烧结 LLZO 陶瓷,但迄今为止,用于生产致密、相纯的 LLZO 固态电解质的方法主要局限于毫米厚的颗粒,而这种颗粒不适合用于商用固态电池。本研究提出超快烧结法是一种高效的方法,可用于制造自立、致密、45 微米厚的 LLZO 膜。在超快烧结过程中,LLZO 膜的化学和结构演变是通过原位同步辐射 X 射线衍射和热重分析-质谱法表征的,并辅以 X 射线光电子能谱对表面化学的深入研究。锂/LLZO/锂对称电池配置中的膜表现出高达 12.5 mA cm-2 的临界电流密度,并且在 1 mA cm-2 电流密度下循环 250 次仍能保持卓越的循环稳定性,极限容量为 1 mAh cm-2。此外,还使用焦绿宝石型羟基氟化铁(III)阴极评估了 LLZO 膜在全电池配置中的电化学性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Ultrafast Sintering of Dense Li7La3Zr2O12 Membranes for Li Metal All-Solid-State Batteries.

Ultrafast sintering (UFS) is a compelling approach for fabricating Li7La3Zr2O12 (LLZO) solid-state electrolytes (SSEs), paving the way for advancing and commercializing Li-garnet solid-state batteries. Although this method is commonly applied to the sintering of LLZO ceramics, its use for producing dense, phase-pure LLZO SSEs has thus far been primarily limited to millimeter-thick pellets, which are unsuitable for commercial solid-state batteries. This study presents ultrafast sintering as a highly effective approach for fabricating self-standing, dense, 45 µm-thick LLZO membranes. The chemical and structural evolution of LLZO membranes during the UFS process is characterized through in situ synchrotron X-ray diffraction and thermogravimetric analysis-mass spectrometry, complemented by an in-depth investigation of surface chemistry using X-ray photoelectron spectroscopy. The membranes in Li/LLZO/Li symmetrical cell configuration exhibit a high critical current density of up to 12.5 mA cm-2 and maintain superior cycling stability for 250 cycles at a current density of 1 mA cm-2, with an areal capacity limit of 1 mAh cm-2. The electrochemical performance of LLZO membranes is also assessed in full cell configuration using a pyrochlore-type iron (III) hydroxy fluoride cathode.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信