Yanan Li, Bo Wen, Na Li, Yuanjun Zhao, Yuzhi Chen, Xiangkai Yin, Xinyu Da, Yuxin Ouyang, Xinyang Li, Pengxiang Kong, Shujiang Ding, Kai Xi, Guoxin Gao
{"title":"电解质工程为宽温度范围的锂金属电池构建具有高离子传导性的坚固相。","authors":"Yanan Li, Bo Wen, Na Li, Yuanjun Zhao, Yuzhi Chen, Xiangkai Yin, Xinyu Da, Yuxin Ouyang, Xinyang Li, Pengxiang Kong, Shujiang Ding, Kai Xi, Guoxin Gao","doi":"10.1002/anie.202414636","DOIUrl":null,"url":null,"abstract":"<p><p>Unstable interphase formed in conventional carbonate-based electrolytes significantly hinders the widespread application of lithium metal batteries (LMBs) with high-capacity nickel-rich layered oxides (e.g., LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub>, NCM811) over a wide temperature range. To balance ion transport kinetics and interfacial stability over wide temperature range, herein a bifunctional electrolyte (EAFP) tailoring the electrode/electrolyte interphase with 1,3-propanesultone as an additive was developed. The resulting cathode-electrolyte interphase with an inorganic inner layer and an organic outer layer possesses high mechanical stability and flexibility, alleviating stress accumulation and maintaining the structural integrity of the NCM811 cathode. Meanwhile, the inorganic-rich solid electrolyte interphase inhibits electrolyte side reactions and facilitates fast Li<sup>+</sup> transport. As a result, the Li||Li cells exhibit stable performance in extensive temperatures with low overpotentials, especially achieving a long lifespan of 1000 h at 30 °C. Furthermore, the optimized EAFP is also suitable for LiFePO<sub>4</sub> and LiCO<sub>2</sub> cathodes (1000 cycles, retention: 67 %). The Li||NCM811 and graphite||NCM811 pouch cells with lean electrolyte (g/Ah grade) operate stably, verifying the broad electrode compatibility of EAFP. Notably, the Li||NCM811 cells can operate in wide climate range from -40 °C to 60 °C. This work establishes new guidelines for the regulation of interphase by electrolytes in all-weather LMBs.</p>","PeriodicalId":125,"journal":{"name":"Angewandte Chemie International Edition","volume":" ","pages":"e202414636"},"PeriodicalIF":16.1000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrolyte Engineering to Construct Robust Interphase with High Ionic Conductivity for Wide Temperature Range Lithium Metal Batteries.\",\"authors\":\"Yanan Li, Bo Wen, Na Li, Yuanjun Zhao, Yuzhi Chen, Xiangkai Yin, Xinyu Da, Yuxin Ouyang, Xinyang Li, Pengxiang Kong, Shujiang Ding, Kai Xi, Guoxin Gao\",\"doi\":\"10.1002/anie.202414636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Unstable interphase formed in conventional carbonate-based electrolytes significantly hinders the widespread application of lithium metal batteries (LMBs) with high-capacity nickel-rich layered oxides (e.g., LiNi<sub>0.8</sub>Co<sub>0.1</sub>Mn<sub>0.1</sub>O<sub>2</sub>, NCM811) over a wide temperature range. To balance ion transport kinetics and interfacial stability over wide temperature range, herein a bifunctional electrolyte (EAFP) tailoring the electrode/electrolyte interphase with 1,3-propanesultone as an additive was developed. The resulting cathode-electrolyte interphase with an inorganic inner layer and an organic outer layer possesses high mechanical stability and flexibility, alleviating stress accumulation and maintaining the structural integrity of the NCM811 cathode. Meanwhile, the inorganic-rich solid electrolyte interphase inhibits electrolyte side reactions and facilitates fast Li<sup>+</sup> transport. As a result, the Li||Li cells exhibit stable performance in extensive temperatures with low overpotentials, especially achieving a long lifespan of 1000 h at 30 °C. Furthermore, the optimized EAFP is also suitable for LiFePO<sub>4</sub> and LiCO<sub>2</sub> cathodes (1000 cycles, retention: 67 %). The Li||NCM811 and graphite||NCM811 pouch cells with lean electrolyte (g/Ah grade) operate stably, verifying the broad electrode compatibility of EAFP. Notably, the Li||NCM811 cells can operate in wide climate range from -40 °C to 60 °C. This work establishes new guidelines for the regulation of interphase by electrolytes in all-weather LMBs.</p>\",\"PeriodicalId\":125,\"journal\":{\"name\":\"Angewandte Chemie International Edition\",\"volume\":\" \",\"pages\":\"e202414636\"},\"PeriodicalIF\":16.1000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie International Edition\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/anie.202414636\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/11/22 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie International Edition","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/anie.202414636","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/11/22 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
传统碳酸盐基电解质中形成的不稳定界面极大地阻碍了采用高容量富镍层状氧化物(如 LiNi0.8Co0.1Mn0.1O2、NCM811)的锂金属电池(LMB)在宽温度范围内的广泛应用。为了在宽温度范围内平衡离子传输动力学和界面稳定性,我们开发了一种以 1,3-丙磺酸内酯为添加剂的双功能电解质(EAFP),用于电极/电解质相间。所得到的阴极-电解质间相具有无机内层和有机外层,具有较高的机械稳定性和柔韧性,可减轻应力积累并保持 NCM811 阴极的结构完整性。同时,富含无机物的固体电解质相间层可抑制电解质副反应,促进 Li+ 的快速传输。因此,|||锂电池在较低的过电位和较高的温度条件下表现出稳定的性能,尤其是在 30 °C 条件下实现了 1000 小时的长寿命。此外,优化的 EAFP 也适用于磷酸铁锂和二氧化碳锂阴极(1000 次循环,保持率:67%)。使用贫电解液(g/Ah 级)的锂||NCM811 和石墨||NCM811 袋装电池运行稳定,验证了 EAFP 广泛的电极兼容性。值得注意的是,Li||NCM811 电池可在 -40 °C 至 60 °C 的宽气候范围内运行。这项工作为全天候 LMB 中电解质对相间的调节确立了新的准则。
Electrolyte Engineering to Construct Robust Interphase with High Ionic Conductivity for Wide Temperature Range Lithium Metal Batteries.
Unstable interphase formed in conventional carbonate-based electrolytes significantly hinders the widespread application of lithium metal batteries (LMBs) with high-capacity nickel-rich layered oxides (e.g., LiNi0.8Co0.1Mn0.1O2, NCM811) over a wide temperature range. To balance ion transport kinetics and interfacial stability over wide temperature range, herein a bifunctional electrolyte (EAFP) tailoring the electrode/electrolyte interphase with 1,3-propanesultone as an additive was developed. The resulting cathode-electrolyte interphase with an inorganic inner layer and an organic outer layer possesses high mechanical stability and flexibility, alleviating stress accumulation and maintaining the structural integrity of the NCM811 cathode. Meanwhile, the inorganic-rich solid electrolyte interphase inhibits electrolyte side reactions and facilitates fast Li+ transport. As a result, the Li||Li cells exhibit stable performance in extensive temperatures with low overpotentials, especially achieving a long lifespan of 1000 h at 30 °C. Furthermore, the optimized EAFP is also suitable for LiFePO4 and LiCO2 cathodes (1000 cycles, retention: 67 %). The Li||NCM811 and graphite||NCM811 pouch cells with lean electrolyte (g/Ah grade) operate stably, verifying the broad electrode compatibility of EAFP. Notably, the Li||NCM811 cells can operate in wide climate range from -40 °C to 60 °C. This work establishes new guidelines for the regulation of interphase by electrolytes in all-weather LMBs.
期刊介绍:
Angewandte Chemie, a journal of the German Chemical Society (GDCh), maintains a leading position among scholarly journals in general chemistry with an impressive Impact Factor of 16.6 (2022 Journal Citation Reports, Clarivate, 2023). Published weekly in a reader-friendly format, it features new articles almost every day. Established in 1887, Angewandte Chemie is a prominent chemistry journal, offering a dynamic blend of Review-type articles, Highlights, Communications, and Research Articles on a weekly basis, making it unique in the field.