用于高效根除细菌生物膜和细胞内细菌的 pH 响应蛋白聚合纳米载体

IF 4.2 3区 化学 Q2 POLYMER SCIENCE
Yirixiatijiang Amier, Wenke Ji, Yang Xun, Xiao Yu, Zhiyuan Zhu, Jingyi Rao
{"title":"用于高效根除细菌生物膜和细胞内细菌的 pH 响应蛋白聚合纳米载体","authors":"Yirixiatijiang Amier, Wenke Ji, Yang Xun, Xiao Yu, Zhiyuan Zhu, Jingyi Rao","doi":"10.1002/marc.202400809","DOIUrl":null,"url":null,"abstract":"<p><p>Bacterial biofilms and intracellular pathogens pose significant challenges in eradication, often leading to persistent infections that are difficult to treat. To address this issue, the hydrophobic biofilm dispersant D-tyrosine is encapsulated within protein-polycation nanoparticles, designed using a mannose-terminated cationic polymer and concanavalin through electrostatic interactions. Thermodynamic studies reveal that free mannosyl groups on the nanoparticle surface promote spontaneous binding to receptor molecules mimicking those on bacterial biofilms and host cells. Under mildly acidic conditions, the nanoparticles reduce in size from 550 to ≈48 nm within 2 h, releasing 76% of encapsulated D-tyrosine. The combination of mannose targeting, particle size reduction, and controlled D-tyrosine release enable the nanoparticles to eliminate 70%-80% of the Pseudomonas aeruginosa and Staphylococcus aureus biofilm biomass at minimum bactericidal concentration (MBC) and 2MBC while eradicating 8 log of bacteria embedded within the biofilm. In an intracellular Pseudomonas aeruginosa infection model using RAW 264.7 macrophages, the nanoparticles at 2MBC eliminate over 95% of the intracellular bacteria without inducing an increase in the inflammatory cytokine interleukin-6. These protein-polycation nanoparticles, which activate their antimicrobial properties under acidic conditions, efficiently penetrate bacterial biofilms and host cell barriers via their mannose-rich surface, offering a promising strategy for the treatment of persistent infections.</p>","PeriodicalId":205,"journal":{"name":"Macromolecular Rapid Communications","volume":" ","pages":"e2400809"},"PeriodicalIF":4.2000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pH-Responsive Protein-Polycation Nanocarriers for Efficient Eradication of Bacterial Biofilms and Intracellular Bacteria.\",\"authors\":\"Yirixiatijiang Amier, Wenke Ji, Yang Xun, Xiao Yu, Zhiyuan Zhu, Jingyi Rao\",\"doi\":\"10.1002/marc.202400809\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bacterial biofilms and intracellular pathogens pose significant challenges in eradication, often leading to persistent infections that are difficult to treat. To address this issue, the hydrophobic biofilm dispersant D-tyrosine is encapsulated within protein-polycation nanoparticles, designed using a mannose-terminated cationic polymer and concanavalin through electrostatic interactions. Thermodynamic studies reveal that free mannosyl groups on the nanoparticle surface promote spontaneous binding to receptor molecules mimicking those on bacterial biofilms and host cells. Under mildly acidic conditions, the nanoparticles reduce in size from 550 to ≈48 nm within 2 h, releasing 76% of encapsulated D-tyrosine. The combination of mannose targeting, particle size reduction, and controlled D-tyrosine release enable the nanoparticles to eliminate 70%-80% of the Pseudomonas aeruginosa and Staphylococcus aureus biofilm biomass at minimum bactericidal concentration (MBC) and 2MBC while eradicating 8 log of bacteria embedded within the biofilm. In an intracellular Pseudomonas aeruginosa infection model using RAW 264.7 macrophages, the nanoparticles at 2MBC eliminate over 95% of the intracellular bacteria without inducing an increase in the inflammatory cytokine interleukin-6. These protein-polycation nanoparticles, which activate their antimicrobial properties under acidic conditions, efficiently penetrate bacterial biofilms and host cell barriers via their mannose-rich surface, offering a promising strategy for the treatment of persistent infections.</p>\",\"PeriodicalId\":205,\"journal\":{\"name\":\"Macromolecular Rapid Communications\",\"volume\":\" \",\"pages\":\"e2400809\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Macromolecular Rapid Communications\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1002/marc.202400809\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Macromolecular Rapid Communications","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/marc.202400809","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

细菌生物膜和细胞内病原体给根除工作带来了巨大挑战,往往导致难以治疗的持续感染。为解决这一问题,我们将疏水性生物膜分散剂 D- 酪氨酸封装在蛋白质聚阳离子纳米粒子中,这种纳米粒子是利用阳离子聚合物和 concanavalin 通过静电相互作用设计而成的。热力学研究表明,纳米粒子表面的游离甘露糖基可促进与模仿细菌生物膜和宿主细胞上的受体分子自发结合。在弱酸性条件下,纳米颗粒的尺寸在 2 小时内从 550 纳米缩小到≈48 纳米,释放出 76% 的封装 D-酪氨酸。甘露糖靶向性、粒径减小和可控 D- 酪氨酸释放的结合,使纳米颗粒在最低杀菌浓度(MBC)和 2MBC 条件下能消灭 70%-80% 的铜绿假单胞菌和金黄色葡萄球菌生物膜生物量,同时消灭生物膜内 8 log 的细菌。在使用 RAW 264.7 巨噬细胞的铜绿假单胞菌胞内感染模型中,2MBC 的纳米粒子能消灭 95% 以上的胞内细菌,而不会引起炎症细胞因子白细胞介素-6 的增加。这些蛋白质聚阳离子纳米粒子在酸性条件下可激活其抗菌特性,通过其富含甘露糖的表面有效穿透细菌生物膜和宿主细胞屏障,为治疗顽固性感染提供了一种前景广阔的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
pH-Responsive Protein-Polycation Nanocarriers for Efficient Eradication of Bacterial Biofilms and Intracellular Bacteria.

Bacterial biofilms and intracellular pathogens pose significant challenges in eradication, often leading to persistent infections that are difficult to treat. To address this issue, the hydrophobic biofilm dispersant D-tyrosine is encapsulated within protein-polycation nanoparticles, designed using a mannose-terminated cationic polymer and concanavalin through electrostatic interactions. Thermodynamic studies reveal that free mannosyl groups on the nanoparticle surface promote spontaneous binding to receptor molecules mimicking those on bacterial biofilms and host cells. Under mildly acidic conditions, the nanoparticles reduce in size from 550 to ≈48 nm within 2 h, releasing 76% of encapsulated D-tyrosine. The combination of mannose targeting, particle size reduction, and controlled D-tyrosine release enable the nanoparticles to eliminate 70%-80% of the Pseudomonas aeruginosa and Staphylococcus aureus biofilm biomass at minimum bactericidal concentration (MBC) and 2MBC while eradicating 8 log of bacteria embedded within the biofilm. In an intracellular Pseudomonas aeruginosa infection model using RAW 264.7 macrophages, the nanoparticles at 2MBC eliminate over 95% of the intracellular bacteria without inducing an increase in the inflammatory cytokine interleukin-6. These protein-polycation nanoparticles, which activate their antimicrobial properties under acidic conditions, efficiently penetrate bacterial biofilms and host cell barriers via their mannose-rich surface, offering a promising strategy for the treatment of persistent infections.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Macromolecular Rapid Communications
Macromolecular Rapid Communications 工程技术-高分子科学
CiteScore
7.70
自引率
6.50%
发文量
477
审稿时长
1.4 months
期刊介绍: Macromolecular Rapid Communications publishes original research in polymer science, ranging from chemistry and physics of polymers to polymers in materials science and life sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信