{"title":"用于骨再生的 Zn-EGCG 负载壳聚糖支架的制作与评估:从细胞反应到体内性能。","authors":"Yu Yang, Wei Sun, Qiang Fu, Zhongyuan Wang, Hui Zhao, Zaijun Wang, Yuzhong Gao, Jian Wang","doi":"10.1016/j.ijbiomac.2024.137695","DOIUrl":null,"url":null,"abstract":"<p><p>We have synthesized a flavonoid metal complex (FMC) by chelating zinc to epigallocatechin-3-gallate (EGCG), a flavonoid present in green tea and incorporated into chitosan (CS) to form 3D constructs by freeze drying method. Scanning electron microscopy characterized The scaffolds for surface morphology and pore dimensions and depicted the presence of interconnected porous network. The scaffolds exhibited optimal pore size (>50 μm), facilitating bone tissue ingrowth and neovascularization. Inclusion of Zn-EGCG into CS matrix improved the mechanical property by increasing compressive strength (0.53±0.045 MPa) and reducing enzymatic degradation with controlled swelling. In addition, increased protein adsorption was observed during the initial hour, which is crucial for cell attachment. Furthermore, the FMC inclusion promoted exogenous biomineralization of CS scaffolds as early as 4d in simulated body fluid. Indirect cytotoxicity measurements indicated the scaffolds with Zn-EGCG had no toxic effects on mouse mesenchymal stem cells (mMSCs). Under osteogenic environment, the scaffold promoted calcium deposition of mMSCs by upregulation of ALP activity and increased expression of osteoblast differentiation markers such as Runx2, ColI, OC and OPN. We found that the involvement of miR-15b/smurf-1 signalling pathway behind the osteogenic potential of the scaffold. In vivo assessments using the chick embryo CAM assay showed enhanced angiogenesis and confirmed the scaffold's biocompatibility with no toxicity. Additionally, in a zebrafish scale regeneration model, the scaffold enhanced calcium deposition and osteoblast marker expression, aligning with the in vitro findings. Overall, form the study it is clear that the osteogenic potential of the scaffold is as follows chitosan < EGCG-Chitosan < Zn-EGCG-Chitosan.</p>","PeriodicalId":333,"journal":{"name":"International Journal of Biological Macromolecules","volume":" ","pages":"137695"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Fabrication and evaluation of Zn-EGCG-loaded chitosan scaffolds for bone regeneration: From cellular responses to in vivo performance.\",\"authors\":\"Yu Yang, Wei Sun, Qiang Fu, Zhongyuan Wang, Hui Zhao, Zaijun Wang, Yuzhong Gao, Jian Wang\",\"doi\":\"10.1016/j.ijbiomac.2024.137695\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We have synthesized a flavonoid metal complex (FMC) by chelating zinc to epigallocatechin-3-gallate (EGCG), a flavonoid present in green tea and incorporated into chitosan (CS) to form 3D constructs by freeze drying method. Scanning electron microscopy characterized The scaffolds for surface morphology and pore dimensions and depicted the presence of interconnected porous network. The scaffolds exhibited optimal pore size (>50 μm), facilitating bone tissue ingrowth and neovascularization. Inclusion of Zn-EGCG into CS matrix improved the mechanical property by increasing compressive strength (0.53±0.045 MPa) and reducing enzymatic degradation with controlled swelling. In addition, increased protein adsorption was observed during the initial hour, which is crucial for cell attachment. Furthermore, the FMC inclusion promoted exogenous biomineralization of CS scaffolds as early as 4d in simulated body fluid. Indirect cytotoxicity measurements indicated the scaffolds with Zn-EGCG had no toxic effects on mouse mesenchymal stem cells (mMSCs). Under osteogenic environment, the scaffold promoted calcium deposition of mMSCs by upregulation of ALP activity and increased expression of osteoblast differentiation markers such as Runx2, ColI, OC and OPN. We found that the involvement of miR-15b/smurf-1 signalling pathway behind the osteogenic potential of the scaffold. In vivo assessments using the chick embryo CAM assay showed enhanced angiogenesis and confirmed the scaffold's biocompatibility with no toxicity. Additionally, in a zebrafish scale regeneration model, the scaffold enhanced calcium deposition and osteoblast marker expression, aligning with the in vitro findings. Overall, form the study it is clear that the osteogenic potential of the scaffold is as follows chitosan < EGCG-Chitosan < Zn-EGCG-Chitosan.</p>\",\"PeriodicalId\":333,\"journal\":{\"name\":\"International Journal of Biological Macromolecules\",\"volume\":\" \",\"pages\":\"137695\"},\"PeriodicalIF\":7.7000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Biological Macromolecules\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ijbiomac.2024.137695\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Biological Macromolecules","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.ijbiomac.2024.137695","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Fabrication and evaluation of Zn-EGCG-loaded chitosan scaffolds for bone regeneration: From cellular responses to in vivo performance.
We have synthesized a flavonoid metal complex (FMC) by chelating zinc to epigallocatechin-3-gallate (EGCG), a flavonoid present in green tea and incorporated into chitosan (CS) to form 3D constructs by freeze drying method. Scanning electron microscopy characterized The scaffolds for surface morphology and pore dimensions and depicted the presence of interconnected porous network. The scaffolds exhibited optimal pore size (>50 μm), facilitating bone tissue ingrowth and neovascularization. Inclusion of Zn-EGCG into CS matrix improved the mechanical property by increasing compressive strength (0.53±0.045 MPa) and reducing enzymatic degradation with controlled swelling. In addition, increased protein adsorption was observed during the initial hour, which is crucial for cell attachment. Furthermore, the FMC inclusion promoted exogenous biomineralization of CS scaffolds as early as 4d in simulated body fluid. Indirect cytotoxicity measurements indicated the scaffolds with Zn-EGCG had no toxic effects on mouse mesenchymal stem cells (mMSCs). Under osteogenic environment, the scaffold promoted calcium deposition of mMSCs by upregulation of ALP activity and increased expression of osteoblast differentiation markers such as Runx2, ColI, OC and OPN. We found that the involvement of miR-15b/smurf-1 signalling pathway behind the osteogenic potential of the scaffold. In vivo assessments using the chick embryo CAM assay showed enhanced angiogenesis and confirmed the scaffold's biocompatibility with no toxicity. Additionally, in a zebrafish scale regeneration model, the scaffold enhanced calcium deposition and osteoblast marker expression, aligning with the in vitro findings. Overall, form the study it is clear that the osteogenic potential of the scaffold is as follows chitosan < EGCG-Chitosan < Zn-EGCG-Chitosan.
期刊介绍:
The International Journal of Biological Macromolecules is a well-established international journal dedicated to research on the chemical and biological aspects of natural macromolecules. Focusing on proteins, macromolecular carbohydrates, glycoproteins, proteoglycans, lignins, biological poly-acids, and nucleic acids, the journal presents the latest findings in molecular structure, properties, biological activities, interactions, modifications, and functional properties. Papers must offer new and novel insights, encompassing related model systems, structural conformational studies, theoretical developments, and analytical techniques. Each paper is required to primarily focus on at least one named biological macromolecule, reflected in the title, abstract, and text.