{"title":"通过多肽共轭光动力疗法精确降解 HER2 蛋白,增强乳腺癌免疫疗法。","authors":"Changyong Guo, Fei Gao, Guoyuan Wu, Jinqiu Li, Chunquan Sheng, Shipeng He, Honggang Hu","doi":"10.1002/advs.202410778","DOIUrl":null,"url":null,"abstract":"<p><p>Breast cancer, the most prevalent malignancy among women, frequently exhibits high HER2 expression, making HER2 a critical therapeutic target. Traditional treatments combining the anti-HER2 antibody trastuzumab with immunotherapy face limitations due to toxicity and tumor microenvironment immunosuppression. This study introduces an innovative strategy combining HER2-targeting peptides with the photosensitizer (PSs) pyropheophorbide-a (Pha) via a gelatinase-cleavable linker, forming self-assembling nanoparticles. These nanoparticles actively target breast cancer cells and generate reactive oxygen species (ROS) under near-infrared light, effectively degrading HER2 proteins. Upon internalization, the linker is cleaved, releasing Pha-PLG and enhancing intracellular photodynamic therapy (PDT). The Pha-PLG molecules self-assemble into nanofibers, prolonging circulation, boosting immune induction, and activating CD8<sup>+</sup> T cells, thus promoting a robust anti-tumor immune response. In vivo, studies confirm superior biosafety, tumor targeting, and HER2 degradation, with increased cytotoxic T cell activity and improved antitumor immunity. This integrated strategy offers a promising new avenue for breast cancer treatment.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":" ","pages":"e2410778"},"PeriodicalIF":14.3000,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Precise HER2 Protein Degradation via Peptide-Conjugated Photodynamic Therapy for Enhanced Breast Cancer Immunotherapy.\",\"authors\":\"Changyong Guo, Fei Gao, Guoyuan Wu, Jinqiu Li, Chunquan Sheng, Shipeng He, Honggang Hu\",\"doi\":\"10.1002/advs.202410778\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Breast cancer, the most prevalent malignancy among women, frequently exhibits high HER2 expression, making HER2 a critical therapeutic target. Traditional treatments combining the anti-HER2 antibody trastuzumab with immunotherapy face limitations due to toxicity and tumor microenvironment immunosuppression. This study introduces an innovative strategy combining HER2-targeting peptides with the photosensitizer (PSs) pyropheophorbide-a (Pha) via a gelatinase-cleavable linker, forming self-assembling nanoparticles. These nanoparticles actively target breast cancer cells and generate reactive oxygen species (ROS) under near-infrared light, effectively degrading HER2 proteins. Upon internalization, the linker is cleaved, releasing Pha-PLG and enhancing intracellular photodynamic therapy (PDT). The Pha-PLG molecules self-assemble into nanofibers, prolonging circulation, boosting immune induction, and activating CD8<sup>+</sup> T cells, thus promoting a robust anti-tumor immune response. In vivo, studies confirm superior biosafety, tumor targeting, and HER2 degradation, with increased cytotoxic T cell activity and improved antitumor immunity. This integrated strategy offers a promising new avenue for breast cancer treatment.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\" \",\"pages\":\"e2410778\"},\"PeriodicalIF\":14.3000,\"publicationDate\":\"2024-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/advs.202410778\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/advs.202410778","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
乳腺癌是女性中发病率最高的恶性肿瘤,经常出现 HER2 高表达,因此 HER2 成为重要的治疗靶点。抗 HER2 抗体曲妥珠单抗与免疫疗法相结合的传统治疗方法因毒性和肿瘤微环境免疫抑制而受到限制。本研究介绍了一种创新策略,即通过明胶酶可清除连接体将 HER2 靶向肽与光敏剂(PSs)焦油佛手苷-a(Pha)结合起来,形成自组装纳米颗粒。这些纳米粒子能主动靶向乳腺癌细胞,并在近红外线下产生活性氧(ROS),有效降解 HER2 蛋白。内化后,连接体被裂解,释放出 Pha-PLG,增强细胞内光动力疗法(PDT)。Pha-PLG 分子可自组装成纳米纤维,延长循环时间,增强免疫诱导,激活 CD8+ T 细胞,从而促进强有力的抗肿瘤免疫反应。在体内,研究证实了其卓越的生物安全性、肿瘤靶向性和 HER2 降解性,并提高了细胞毒性 T 细胞的活性和抗肿瘤免疫力。这种综合策略为乳腺癌治疗提供了一条前景广阔的新途径。
Precise HER2 Protein Degradation via Peptide-Conjugated Photodynamic Therapy for Enhanced Breast Cancer Immunotherapy.
Breast cancer, the most prevalent malignancy among women, frequently exhibits high HER2 expression, making HER2 a critical therapeutic target. Traditional treatments combining the anti-HER2 antibody trastuzumab with immunotherapy face limitations due to toxicity and tumor microenvironment immunosuppression. This study introduces an innovative strategy combining HER2-targeting peptides with the photosensitizer (PSs) pyropheophorbide-a (Pha) via a gelatinase-cleavable linker, forming self-assembling nanoparticles. These nanoparticles actively target breast cancer cells and generate reactive oxygen species (ROS) under near-infrared light, effectively degrading HER2 proteins. Upon internalization, the linker is cleaved, releasing Pha-PLG and enhancing intracellular photodynamic therapy (PDT). The Pha-PLG molecules self-assemble into nanofibers, prolonging circulation, boosting immune induction, and activating CD8+ T cells, thus promoting a robust anti-tumor immune response. In vivo, studies confirm superior biosafety, tumor targeting, and HER2 degradation, with increased cytotoxic T cell activity and improved antitumor immunity. This integrated strategy offers a promising new avenue for breast cancer treatment.
期刊介绍:
Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.