基因组数据支持苏格兰松树原产地区域划分的修订。

IF 3.5 2区 生物学 Q1 EVOLUTIONARY BIOLOGY
Martyna Lasek, Julia Zaborowska, Bartosz Łabiszak, Daniel J. Chmura, Witold Wachowiak
{"title":"基因组数据支持苏格兰松树原产地区域划分的修订。","authors":"Martyna Lasek,&nbsp;Julia Zaborowska,&nbsp;Bartosz Łabiszak,&nbsp;Daniel J. Chmura,&nbsp;Witold Wachowiak","doi":"10.1111/eva.70038","DOIUrl":null,"url":null,"abstract":"<p>Scots pine is a crucial component of ecosystems in Europe and Asia and a major utility species that comprises more than 60% of total forest production in Poland. Despite its importance, the genetic relationships between key conservation and the commercial value of Scots pine ecotypes in Poland remain unclear. To address this problem, we analyzed 27 populations (841 trees) of the most valuable Polish Scots pine ecotypes, including the oldest natural stands in all 24 regions of provenance established for the species in the country. By examining maternally inherited mitochondrial markers, nuclear microsatellite loci, and thousands of SNP markers from a genotyping array, we evaluated the genetic structure between and within them. These multilevel genomic data revealed high genetic similarity and a homogeneous structure in most populations, suggesting a common historical origin and admixture of populations after the postglacial recolonization of Central Europe. This research presents novel data on existing genomic resources among local ecotypes defined within strictly managed Polish regions of provenance, challenging their validity. Formal tests of the progeny of seed stands are needed to check whether the diversity in adaptation and quantitative traits still supports the delineation of provenance regions. In parallel, the health status of selected populations and the viability of seeds from these regions should be monitored to detect early-stage symptoms of their environmental stress. It seems reasonable that periodic shortages of forest reproductive material (FRM) in a given region of provenance could be supplemented with the one from other regions that match their climatic envelope. Together, our results have important implications for the management of native Scots pine stands, particularly elite breeding populations, as they contribute to the discussion of the boundaries of provenance regions and the transfers of FRM that face increasing climate change.</p>","PeriodicalId":168,"journal":{"name":"Evolutionary Applications","volume":"17 11","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568063/pdf/","citationCount":"0","resultStr":"{\"title\":\"Genomic Data Support the Revision of Provenance Regions Delimitation for Scots Pine\",\"authors\":\"Martyna Lasek,&nbsp;Julia Zaborowska,&nbsp;Bartosz Łabiszak,&nbsp;Daniel J. Chmura,&nbsp;Witold Wachowiak\",\"doi\":\"10.1111/eva.70038\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Scots pine is a crucial component of ecosystems in Europe and Asia and a major utility species that comprises more than 60% of total forest production in Poland. Despite its importance, the genetic relationships between key conservation and the commercial value of Scots pine ecotypes in Poland remain unclear. To address this problem, we analyzed 27 populations (841 trees) of the most valuable Polish Scots pine ecotypes, including the oldest natural stands in all 24 regions of provenance established for the species in the country. By examining maternally inherited mitochondrial markers, nuclear microsatellite loci, and thousands of SNP markers from a genotyping array, we evaluated the genetic structure between and within them. These multilevel genomic data revealed high genetic similarity and a homogeneous structure in most populations, suggesting a common historical origin and admixture of populations after the postglacial recolonization of Central Europe. This research presents novel data on existing genomic resources among local ecotypes defined within strictly managed Polish regions of provenance, challenging their validity. Formal tests of the progeny of seed stands are needed to check whether the diversity in adaptation and quantitative traits still supports the delineation of provenance regions. In parallel, the health status of selected populations and the viability of seeds from these regions should be monitored to detect early-stage symptoms of their environmental stress. It seems reasonable that periodic shortages of forest reproductive material (FRM) in a given region of provenance could be supplemented with the one from other regions that match their climatic envelope. Together, our results have important implications for the management of native Scots pine stands, particularly elite breeding populations, as they contribute to the discussion of the boundaries of provenance regions and the transfers of FRM that face increasing climate change.</p>\",\"PeriodicalId\":168,\"journal\":{\"name\":\"Evolutionary Applications\",\"volume\":\"17 11\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11568063/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolutionary Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/eva.70038\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolutionary Applications","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/eva.70038","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

苏格兰松是欧洲和亚洲生态系统的重要组成部分,也是波兰森林总产量 60% 以上的主要实用树种。尽管它非常重要,但波兰苏格兰松树生态型的关键保护和商业价值之间的遗传关系仍不清楚。为了解决这个问题,我们分析了波兰最有价值的苏格兰松树生态型的 27 个种群(841 棵树),其中包括波兰为该物种建立的所有 24 个产地区域中最古老的自然林分。通过研究母系遗传的线粒体标记、核微卫星位点以及基因分型阵列中的数千个 SNP 标记,我们评估了这些种群之间以及种群内部的遗传结构。这些多层次基因组数据揭示了大多数种群的高度遗传相似性和同质结构,表明中欧在冰川期后被重新殖民后,存在共同的历史起源和种群混杂。这项研究提供了在严格管理的波兰原产地区域内定义的当地生态型之间现有基因组资源的新数据,对其有效性提出了质疑。需要对种子群的后代进行正式测试,以检查适应性和数量性状的多样性是否仍然支持原产地区域的划分。与此同时,还应对这些地区所选种群的健康状况和种子的存活率进行监测,以发现其环境压力的早期症状。在某一特定产地,森林繁殖材料(FRM)的周期性短缺似乎是合理的,可以用符合其气候环境的其他地区的森林繁殖材料来补充。总之,我们的研究结果对本土苏格兰松林的管理,尤其是精英繁殖种群的管理具有重要意义,因为它们有助于讨论面临日益严重的气候变化的原产地区域边界和森林生殖材料的转移。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Genomic Data Support the Revision of Provenance Regions Delimitation for Scots Pine

Genomic Data Support the Revision of Provenance Regions Delimitation for Scots Pine

Scots pine is a crucial component of ecosystems in Europe and Asia and a major utility species that comprises more than 60% of total forest production in Poland. Despite its importance, the genetic relationships between key conservation and the commercial value of Scots pine ecotypes in Poland remain unclear. To address this problem, we analyzed 27 populations (841 trees) of the most valuable Polish Scots pine ecotypes, including the oldest natural stands in all 24 regions of provenance established for the species in the country. By examining maternally inherited mitochondrial markers, nuclear microsatellite loci, and thousands of SNP markers from a genotyping array, we evaluated the genetic structure between and within them. These multilevel genomic data revealed high genetic similarity and a homogeneous structure in most populations, suggesting a common historical origin and admixture of populations after the postglacial recolonization of Central Europe. This research presents novel data on existing genomic resources among local ecotypes defined within strictly managed Polish regions of provenance, challenging their validity. Formal tests of the progeny of seed stands are needed to check whether the diversity in adaptation and quantitative traits still supports the delineation of provenance regions. In parallel, the health status of selected populations and the viability of seeds from these regions should be monitored to detect early-stage symptoms of their environmental stress. It seems reasonable that periodic shortages of forest reproductive material (FRM) in a given region of provenance could be supplemented with the one from other regions that match their climatic envelope. Together, our results have important implications for the management of native Scots pine stands, particularly elite breeding populations, as they contribute to the discussion of the boundaries of provenance regions and the transfers of FRM that face increasing climate change.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolutionary Applications
Evolutionary Applications 生物-进化生物学
CiteScore
8.50
自引率
7.30%
发文量
175
审稿时长
6 months
期刊介绍: Evolutionary Applications is a fully peer reviewed open access journal. It publishes papers that utilize concepts from evolutionary biology to address biological questions of health, social and economic relevance. Papers are expected to employ evolutionary concepts or methods to make contributions to areas such as (but not limited to): medicine, agriculture, forestry, exploitation and management (fisheries and wildlife), aquaculture, conservation biology, environmental sciences (including climate change and invasion biology), microbiology, and toxicology. All taxonomic groups are covered from microbes, fungi, plants and animals. In order to better serve the community, we also now strongly encourage submissions of papers making use of modern molecular and genetic methods (population and functional genomics, transcriptomics, proteomics, epigenetics, quantitative genetics, association and linkage mapping) to address important questions in any of these disciplines and in an applied evolutionary framework. Theoretical, empirical, synthesis or perspective papers are welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信